On Covering Points with Minimum Turns

Author(s):  
Minghui Jiang

We study the problem of finding a polygonal chain of line segments to cover a set of points in ℝd, d≥2, with the goal of minimizing the number of links or turns in the chain. A chain of line segments that covers all points in the given set is called a covering tour if the chain is closed, and is called a covering path if the chain is open. A covering tour or a covering path is rectilinear if all segments in the chain are axis-parallel. We prove that the two problems Minimum-Link Rectilinear Covering Tour and Minimum-Link Rectilinear Covering Path are both NP-hard in ℝ10.

1993 ◽  
Vol 03 (04) ◽  
pp. 383-415 ◽  
Author(s):  
LEONIDAS J. GUIBAS ◽  
JOHN E. HERSHBERGER ◽  
JOSEPH S.B. MITCHELL ◽  
JACK SCOTT SNOEYINK

We study several variations on one basic approach to the task of simplifying a plane polygon or subdivision: Fatten the given object and construct an approximation inside the fattened region. We investigate fattening by convolving the segments or vertices with disks and attempt to approximate objects with the minimum number of line segments, or with near the minimum, by using efficient greedy algorithms. We give some variants that have linear or O(n log n) algorithms approximating polygonal chains of n segments. We also show that approximating subdivisions and approximating with chains with. no self-intersections are NP-hard.


2014 ◽  
Vol 06 (01) ◽  
pp. 1450011 ◽  
Author(s):  
ADRIAN DUMITRESCU ◽  
JOSEPH S. B. MITCHELL ◽  
PAWEL ŻYLIŃSKI

Given a set ℒ of non-parallel lines in the plane and a nonempty subset ℒ′ ⊆ ℒ, a guarding tree for ℒ′ is a tree contained in the union of the lines in ℒ such that if a mobile guard (agent) runs on the edges of the tree, all lines in ℒ′ are visited by the guard. Similarly, given a connected arrangement 𝒮 of line segments in the plane and a nonempty subset 𝒮′ ⊆ 𝒮, we define a guarding tree for 𝒮′. The minimum guarding tree problem for a given set of lines or line segments is to find a minimum-length guarding tree for the input set. We provide a simple alternative (to [N. Xu, Complexity of minimum corridor guarding problems, Inf. Process. Lett.112(17–18) (2012) 691–696.]) proof of the problem of finding a guarding tree of minimum length for a set of orthogonal (axis-parallel) line segments in the plane. Then, we present two approximation algorithms with factors 2 and 3.98, respectively, for computing a minimum guarding tree for a subset of a set of n arbitrary non-parallel lines in the plane; their running times are O(n8) and O(n6 log n), respectively. Finally, we show that this problem is NP-hard for lines in 3-space.


2020 ◽  
Vol 8 (1) ◽  
pp. 3-14
Author(s):  
V. Yurkov

In this paper are considered planar point sets generated by linear conditions, which are realized in rectangular or Manhattan metric. Linear conditions are those expressed by the finite sum of the products of distances by numerical coefficients. Finite sets of points and lines are considered as figures defining linear conditions. It has been shown that linear conditions can be defined relative to other planar figures: lines, polygons, etc. The design solutions of the following general geometric problem are considered: for a finite set of figures (points, line segments, polygons...) specified on a plane with a rectangular metric, which are in a common position, it is necessary to construct sets that satisfy any linear condition. The problems in which the given sets are point and segment ones have been considered in detail, and linear conditions are represented as a sum or as relations of distances. It is proved that solution result can be isolated points, broken lines, and areas on the plane. Sets of broken lines satisfying the given conditions form families of isolines for the given condition. An algorithm for building isoline families is presented. The algorithm is based on the Hanan lattice construction and the isolines behavior in each node and each sub-region of the lattice. For isoline families defined by conditions for relation of distances, some of their properties allowing accelerate their construction process are proved. As an example for application of the described theory, the problem of plane partition into regions corresponding to a given set of points, lines and other figures is considered. The problem is generalized problem of Voronoi diagram construction, and considered in general formulation. It means the next: 1) the problem is considered in rectangular metric; 2) all given points may be integrated in various figures – separate points, line segments, triangles, quadrangles etc.; 3) the Voronoi diagram’s property of proximity is changed for property of proportionality. Have been represented examples for plane partition into regions, determined by two-point sets.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1457
Author(s):  
Dieyan Liang ◽  
Hong Shen

As an important application of wireless sensor networks (WSNs), deployment of mobile sensors to periodically monitor (sweep cover) a set of points of interest (PoIs) arises in various applications, such as environmental monitoring and data collection. For a set of PoIs in an Eulerian graph, the point sweep coverage problem of deploying the fewest sensors to periodically cover a set of PoIs is known to be Non-deterministic Polynomial Hard (NP-hard), even if all sensors have the same velocity. In this paper, we consider the problem of finding the set of PoIs on a line periodically covered by a given set of mobile sensors that has the maximum sum of weight. The problem is first proven NP-hard when sensors are with different velocities in this paper. Optimal and approximate solutions are also presented for sensors with the same and different velocities, respectively. For M sensors and N PoIs, the optimal algorithm for the case when sensors are with the same velocity runs in O(MN) time; our polynomial-time approximation algorithm for the case when sensors have a constant number of velocities achieves approximation ratio 12; for the general case of arbitrary velocities, 12α and 12(1−1/e) approximation algorithms are presented, respectively, where integer α≥2 is the tradeoff factor between time complexity and approximation ratio.


Author(s):  
Sanjib Sadhu ◽  
Sasanka Roy ◽  
Subhas C. Nandy ◽  
Suchismita Roy
Keyword(s):  

2021 ◽  
Author(s):  
Eswara Venkata Kumar Dhulipala

A Dubin's Travelling Salesman Problem (DTSP) of finding a minimum length tour through a given set of points is considered. DTSP has a Dubins vehicle, which is capable of moving only forward with constant speed. In this paper, first, a worst case upper bound is obtained on DTSP tour length by assuming DTSP tour sequence same as Euclidean Travelling Salesman Problem (ETSP) tour sequence. It is noted that, in the worst case, \emph{any algorithm that uses of ETSP tour sequence} is a constant factor approximation algorithm for DTSP. Next, two new algorithms are introduced, viz., Angle Bisector Algorithm (ABA) and Modified Dynamic Programming Algorithm (MDPA). In ABA, ETSP tour sequence is used as DTSP tour sequence and orientation angle at each point $i_k$ are calculated by using angle bisector of the relative angle formed between the rays $i_{k}i_{k-1}$ and $i_ki_{k+1}$. In MDPA, tour sequence and orientation angles are computed in an integrated manner. It is shown that the ABA and MDPA are constant factor approximation algorithms and ABA provides an improved upper bound as compared to Alternating Algorithm (AA) \cite{savla2008traveling}. Through numerical simulations, we show that ABA provides an improved tour length compared to AA, Single Vehicle Algorithm (SVA) \cite{rathinam2007resource} and Optimized Heading Algorithm (OHA) \cite{babel2020new,manyam2018tightly} when the Euclidean distance between any two points in the given set of points is at least $4\rho$ where $\rho$ is the minimum turning radius. The time complexity of ABA is comparable with AA and SVA and is better than OHA. Also we show that MDPA provides an improved tour length compared to AA and SVA and is comparable with OHA when there is no constraint on Euclidean distance between the points. In particular, ABA gives a tour length which is at most $4\%$ more than the ETSP tour length when the Euclidean distance between any two points in the given set of points is at least $4\rho$.


2011 ◽  
Vol 03 (04) ◽  
pp. 473-489
Author(s):  
HAI DU ◽  
WEILI WU ◽  
ZAIXIN LU ◽  
YINFENG XU

The Steiner minimum tree and the minimum spanning tree are two important problems in combinatorial optimization. Let P denote a finite set of points, called terminals, in the Euclidean space. A Steiner minimum tree of P, denoted by SMT(P), is a network with minimum length to interconnect all terminals, and a minimum spanning tree of P, denoted by MST(P), is also a minimum network interconnecting all the points in P, however, subject to the constraint that all the line segments in it have to terminate at terminals. Therefore, SMT(P) may contain points not in P, but MST(P) cannot contain such kind of points. Let [Formula: see text] denote the n-dimensional Euclidean space. The Steiner ratio in [Formula: see text] is defined to be [Formula: see text], where Ls(P) and Lm(P), respectively, denote lengths of a Steiner minimum tree and a minimum spanning tree of P. The best previously known lower bound for [Formula: see text] in the literature is 0.615. In this paper, we show that [Formula: see text] for any n ≥ 2.


2009 ◽  
Vol 19 (1) ◽  
pp. 121-131 ◽  
Author(s):  
OLEG PIKHURKO

Let c(G) be the smallest number of edges we have to test in order to determine an unknown acyclic orientation of the given graph G in the worst case. For example, if G is the complete graph on n vertices, then c(G) is the smallest number of comparisons needed to sort n numbers.We prove that c(G) ≤ (1/4 + o(1))n2 for any graph G on n vertices, answering in the affirmative a question of Aigner, Triesch and Tuza [Discrete Mathematics144 (1995) 3–10]. Also, we show that, for every ϵ > 0, it is NP-hard to approximate the parameter c(G) within a multiplicative factor 74/73 − ϵ.


2019 ◽  
Vol 29 (02) ◽  
pp. 95-120 ◽  
Author(s):  
Prosenjit Bose ◽  
André van Renssen

We present improved upper bounds on the spanning ratio of constrained [Formula: see text]-graphs with at least 6 cones and constrained Yao-graphs with 5 or at least 7 cones. Given a set of points in the plane, a Yao-graph partitions the plane around each vertex into [Formula: see text] disjoint cones, each having aperture [Formula: see text], and adds an edge to the closest vertex in each cone. Constrained Yao-graphs have the additional property that no edge properly intersects any of the given line segment constraints. Constrained [Formula: see text]-graphs are similar to constrained Yao-graphs, but use a different method to determine the closest vertex. We present tight bounds on the spanning ratio of a large family of constrained [Formula: see text]-graphs. We show that constrained [Formula: see text]-graphs with [Formula: see text] ([Formula: see text] and integer) cones have a tight spanning ratio of [Formula: see text], where [Formula: see text] is [Formula: see text]. We also present improved upper bounds on the spanning ratio of the other families of constrained [Formula: see text]-graphs. These bounds match the current upper bounds in the unconstrained setting. We also show that constrained Yao-graphs with an even number of cones ([Formula: see text]) have spanning ratio at most [Formula: see text] and constrained Yao-graphs with an odd number of cones ([Formula: see text]) have spanning ratio at most [Formula: see text]. As is the case with constrained [Formula: see text]-graphs, these bounds match the current upper bounds in the unconstrained setting, which implies that like in the unconstrained setting using more cones can make the spanning ratio worse.


Sign in / Sign up

Export Citation Format

Share Document