KINEMATIC PROPERTIES OF DAMPED LYMAN ALPHA SYSTEMS

2006 ◽  
Vol 15 (03) ◽  
pp. 371-386
Author(s):  
SNIGDHA DAS ◽  
PUSHPA KHARE

In a previous paper, we determined the statistical distributions for various classes of QSO absorption systems in the framework of the CDM model of the universe with a mass distribution of dark matter halos as given by the Press Schechter mechanism. These were shown to be consistent with the observed distributions for reasonable choices of model parameters. In this paper, we generate Voigt profiles of C IV lines associated with Damped Lyman Alpha systems in the framework of this model, taking into account rotation of disks and random motion of clouds embedded in galactic halos. We compare these with the profiles for a sample of 32 Damped Lyman Alpha systems collected from the literature by performing several statistical tests. These tests compare the width and the degree of asymmetry in the line profiles produced by the rotation of randomly inclined disks and the random velocity of clouds in the galactic halos, with the corresponding quantities in the observed profiles. We find that the kinematic properties predicted by the model are in good agreement with observations provided the disk thickness is about ten thousand times smaller than its radius, which indicates that the material in the disks is concentrated in dense clouds with roughly unit covering factor.

2002 ◽  
Vol 187 ◽  
pp. 109-115
Author(s):  
Donald G. York

Interstellar abundances are compared for the Milky Way disk, the Milky Way halo, the Large and Small Magellanic Clouds and the damped Lyman alpha systems among the QSO absorption line systems. While a new set of observational aspects of element formation in the Universe is emerging, including a dearth of formation activity fromz=5 toz=3, the predicted signal of [Si/Fe] decreasing from highzto lowz, as Type I supernovae start contributing to Fe production, has not yet been seen.


2019 ◽  
Vol 15 (S359) ◽  
pp. 413-414
Author(s):  
María P. Agüero ◽  
Rubén Díaz ◽  
Mischa Schirmer

AbstractThis work is focused on the characterization of the Seyfert-2 galaxies hosting very large, ultra-luminous narrow-line regions (NLRs) at redshifts z = 0.2−0.34. With a space density of 4.4 Gcp−3 at z ∼ 0.3, these “Low Redshift Lyman-α Blob” (LAB) host galaxies are amongst the rarest objects in the universe, and represent an exceptional and short-lived phenomenon in the life cycle of active galactic nuclei (AGNs). We present the study of GMOS spectra for 13 LAB galaxies covering the rest frame spectral range 3700–6700 Å. Predominantly, the [OIII]λ5007 emission line radial distribution is as widespread as that of the continuum one. The emission line profiles exhibit FWHM between 300–700 Km s−1. In 7 of 13 cases a broad kinematical component is detected with FWHM within the range 600–1100 Km s−1. The exceptionally high [OIII]λ5007 luminosity is responsible for very high equivalent width reaching 1500 Å at the nucleus.


2004 ◽  
Vol 13 (07) ◽  
pp. 1345-1349 ◽  
Author(s):  
JOSÉ A. S. LIMA ◽  
LUCIO MARASSI

A generalization of the Press–Schechter (PS) formalism yielding the mass function of bound structures in the Universe is given. The extended formula is based on a power law distribution which encompasses the Gaussian PS formula as a special case. The new method keeps the original analytical simplicity of the PS approach and also solves naturally its main difficult (the missing factor 2) for a given value of the free parameter.


2018 ◽  
Vol 15 (11) ◽  
pp. 1850188 ◽  
Author(s):  
E. Elizalde ◽  
S. D. Odintsov ◽  
E. O. Pozdeeva ◽  
S. Yu. Vernov

The cosmological dynamics of a non-locally corrected gravity theory, involving a power of the inverse d’Alembertian, is investigated. Casting the dynamical equations into local form, the fixed points of the models are derived, as well as corresponding de Sitter and power-law solutions. Necessary and sufficient conditions on the model parameters for the existence of de Sitter solutions are obtained. The possible existence of power-law solutions is investigated, and it is proven that models with de Sitter solutions have no power-law solutions. A model is found, which allows to describe the matter-dominated phase of the Universe evolution.


2006 ◽  
pp. 330-333
Author(s):  
Andrew Bunker ◽  
Annette Ferguson ◽  
Rachel Johnson ◽  
Richard McMahon ◽  
Ian Parry ◽  
...  

1988 ◽  
Vol 130 ◽  
pp. 259-271
Author(s):  
Carlos S. Frenk

Modern N-body techniques allow the study of galaxy formation in the wider context of the formation of large-scale structure in the Universe. The results of such a study within the cold dark matter cosmogony are described. Dark galactic halos form at relatively recent epochs. Their properties and abundance are similar to those inferred for the halos of real galaxies. Massive halos tend to form preferentially in high density regions and as a result the galaxies that form within them are significantly more clustered than the underlying mass. This natural bias may be strong enough to reconcile the observed clustering of galaxies with the assumption that Ω = 1.


1999 ◽  
Vol 183 ◽  
pp. 155-155
Author(s):  
Toshiyuki Fukushige ◽  
Junichiro Makino

We performed N-body simulation on special-purpose computer, GRAPE-4, to investigate the structure of dark matter halos (Fukushige, T. and Makino, J. 1997, ApJL, 477, L9). Universal profile proposed by Navarro, Frenk, and White (1996, ApJ, 462, 563), which has cusp with density profiles ρ ∝r−1in density profile, cannot be reproduced in the standard Cold Dark Matter (CDM) picture of hierarchical clustering. Previous claims to the contrary were based on simulations with relatively few particles, and substantial softening. We performed simulations with particle numbers an order of magnitude higher, and essentially no softening, and found that typical central density profiles are clearly steeper than ρ ∝r−1, as shown in Figure 1. In addition, we confirm the presence of a temperature inversion in the inner 5 kpc of massive galactic halos, and give a natural explanation for formation of the temperature structure.


2010 ◽  
Vol 25 (02n03) ◽  
pp. 554-563 ◽  
Author(s):  
P. SIKIVIE

The hypothesis of an 'invisible' axion was made by Misha Shifman and others, approximately thirty years ago. It has turned out to be an unusually fruitful idea, crossing boundaries between particle physics, astrophysics and cosmology. An axion with mass of order 10-5 eV (with large uncertainties) is one of the leading candidates for the dark matter of the universe. It was found recently that dark matter axions thermalize and form a Bose-Einstein condensate (BEC). Because they form a BEC, axions differ from ordinary cold dark matter (CDM) in the non-linear regime of structure formation and upon entering the horizon. Axion BEC provides a mechanism for the production of net overall rotation in dark matter halos, and for the alignment of cosmic microwave anisotropy multipoles. Because there is evidence for these phenomena, unexplained with ordinary CDM, an argument can be made that the dark matter is axions.


Sign in / Sign up

Export Citation Format

Share Document