scholarly journals PSEUDO-FINSLERIAN SPACE–TIMES AND MULTIREFRINGENCE

2010 ◽  
Vol 19 (07) ◽  
pp. 1119-1146 ◽  
Author(s):  
JOZEF SKÁKALA ◽  
MATT VISSER

Ongoing searches for a quantum theory of gravity have repeatedly led to the suggestion that space–time might ultimately be anisotropic (Finsler-like) and/or exhibit multirefringence (multiple signal cones). Multiple (and even anisotropic) signal cones can be easily dealt with in a unified manner, by writing down a single Fresnel equation to simultaneously encode all signal cones in an even-handed manner. Once one gets off the signal cone and attempts to construct a full multirefringent space–time metric the situation becomes more problematic. In the multirefringent case we shall report a significant no-go result: in multirefringent models there is no simple or compelling way to construct any unifying notion of pseudo-Finsler space–time metric, different from a monorefringenent model, where the signal cone structure plus a conformal factor completely specifies the full pseudo-Riemannian metric. To throw some light on this situation we use an analog model where both anisotropy and multirefringence occur simultaneously: biaxial birefringent crystal. But the significance of our results extends beyond the optical framework in which (purely for pedagogical reasons) we are working, and has implications for any attempt at introducing multirefringence and intrinsic anisotropies to any model of quantum gravity that has a low energy manifold-like limit.

2007 ◽  
Vol 3 (2) ◽  
pp. 203-211
Author(s):  
Arunesh Pandey ◽  
R K Mishra

In this paper we study an anisotropic model of space – time with Finslerian metric. The observed anisotropy of the microwave background radiation is incorporated in the Finslerian metric of space time.


2019 ◽  
Author(s):  
Vitaly Kuyukov

Many approaches to quantum gravity consider the revision of the space-time geometry and the structure of elementary particles. One of the main candidates is string theory. It is possible that this theory will be able to describe the problem of hierarchy, provided that there is an appropriate Calabi-Yau geometry. In this paper we will proceed from the traditional view on the structure of elementary particles in the usual four-dimensional space-time. The only condition is that quarks and leptons should have a common emerging structure. When a new formula for the mass of the hierarchy is obtained, this structure arises from topological quantum theory and a suitable choice of dimensional units.


In Einstein’s theory of gravitation it is assumed that the geometry of space- time is characterised by the following equation for the measurement of displacement:— ds 2 = g mn dx m dx n { m n = 1, 2, 3, 4, the sign of summation being omitted for convenience. It is supposed that the coefficients, of which g mn is the type, are dependent upon the content of space, and the relation existing between them is the law of gravitation.


Author(s):  
Mauro Carfora

A brief introduction to the scientic work of Stephen Hawking and to his contributions to our understanding of the interplay between general relativity and quantum theory.


1995 ◽  
Vol 10 (32) ◽  
pp. 4641-4650
Author(s):  
ARVIND KUMAR

The recent deterministic quantum theory of Roy and Singh is shown to be covariant with respect to Galilean, space reflection and time reversal transformations.


1999 ◽  
Vol 14 (26) ◽  
pp. 4079-4120 ◽  
Author(s):  
LUIS J. GARAY

In this work, I review some aspects concerning the evolution of quantum low-energy fields in a foamlike space–time, with involved topology at the Planck scale but with a smooth metric structure at large length scales, as follows. Quantum gravitational fluctuations may induce a minimum length thus introducing an additional source of uncertainty in physics. The existence of this resolution limit casts doubts on the metric structure of space–time at the Planck scale and opens a doorway to nontrivial topologies, which may dominate Planck scale physics. This foamlike structure of space–time may show up in low-energy physics through loss of quantum coherence and mode-dependent energy shifts, for instance, which might be observable. Space–time foam introduces non-local interactions that can be modeled by a quantum bath, and low-energy fields evolve according to a master equation that displays such effects. Similar laws are also obtained for quantum mechanical systems evolving according to good real clocks, although the underlying Hamiltonian structure in this case establishes serious differences among both scenarios.


2007 ◽  
Vol 22 (10) ◽  
pp. 1797-1818 ◽  
Author(s):  
VISHNU JEJJALA ◽  
DJORDJE MINIC

The cosmological constant problem is turned around to argue for a new foundational physics postulate underlying a consistent quantum theory of gravity and matter, such as string theory. This postulate is a quantum equivalence principle which demands a consistent gauging of the geometric structure of canonical quantum theory. We argue that string theory can be formulated to accommodate such a principle, and that in such a theory the observed cosmological constant is a fluctuation about a zero value. This fluctuation arises from an uncertainty relation involving the cosmological constant and the effective volume of space–time. The measured, small vacuum energy is dynamically tied to the large "size" of the universe, thus violating naive decoupling between small and large scales. The numerical value is related to the scale of cosmological supersymmetry breaking, supersymmetry being needed for a nonperturbative stability of local Minkowski space–time regions in the classical regime.


2019 ◽  
Vol 74 (2) ◽  
pp. 147-152 ◽  
Author(s):  
Tejinder P. Singh

AbstractWe propose that space-time results from collapse of the wave function of macroscopic objects, in quantum dynamics. We first argue that there ought to exist a formulation of quantum theory which does not refer to classical time. We then propose such a formulation by invoking an operator Minkowski space-time on the Hilbert space. We suggest relativistic spontaneous localisation as the mechanism for recovering classical space-time from the underlying theory. Quantum interference in time could be one possible signature for operator time, and in fact may have been already observed in the laboratory, on attosecond time scales. A possible prediction of our work seems to be that interference in time will not be seen for ‘time slit’ separations significantly larger than 100 attosecond, if the ideas of operator time and relativistic spontaneous localisation are correct.


Sign in / Sign up

Export Citation Format

Share Document