scholarly journals QUANTUM EVOLUTION IN SPACE–TIME FOAM

1999 ◽  
Vol 14 (26) ◽  
pp. 4079-4120 ◽  
Author(s):  
LUIS J. GARAY

In this work, I review some aspects concerning the evolution of quantum low-energy fields in a foamlike space–time, with involved topology at the Planck scale but with a smooth metric structure at large length scales, as follows. Quantum gravitational fluctuations may induce a minimum length thus introducing an additional source of uncertainty in physics. The existence of this resolution limit casts doubts on the metric structure of space–time at the Planck scale and opens a doorway to nontrivial topologies, which may dominate Planck scale physics. This foamlike structure of space–time may show up in low-energy physics through loss of quantum coherence and mode-dependent energy shifts, for instance, which might be observable. Space–time foam introduces non-local interactions that can be modeled by a quantum bath, and low-energy fields evolve according to a master equation that displays such effects. Similar laws are also obtained for quantum mechanical systems evolving according to good real clocks, although the underlying Hamiltonian structure in this case establishes serious differences among both scenarios.

2019 ◽  
Vol 97 (5) ◽  
pp. 558-561
Author(s):  
Faizan Bhat ◽  
Mussadiq H. Qureshi ◽  
Manzoor A. Malik ◽  
Asif Iqbal

In this paper, we generalize the formalism of gravity’s rainbow to complex space–time. The resulting geometry depends on the energy of the probe in such a way that the usual real manifold is the low energy approximation of the Planck scale geometry of space–time. So, our formalism agrees with all the observational data about our space–time being real, as at the scale these experiments are preformed, the imaginary part of the geometry is suppressed by Planck energy. However, the imaginary part of the geometry becomes important near the Planck energy, and so it cannot be neglected near the Planck scale. So, the Planck scale geometry of space–time is described by a complex manifold.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 773
Author(s):  
Danko D. Georgiev

Identifying the physiological processes in the central nervous system that underlie our conscious experiences has been at the forefront of cognitive neuroscience. While the principles of classical physics were long found to be unaccommodating for a causally effective consciousness, the inherent indeterminism of quantum physics, together with its characteristic dichotomy between quantum states and quantum observables, provides a fertile ground for the physical modeling of consciousness. Here, we utilize the Schrödinger equation, together with the Planck–Einstein relation between energy and frequency, in order to determine the appropriate quantum dynamical timescale of conscious processes. Furthermore, with the help of a simple two-qubit toy model we illustrate the importance of non-zero interaction Hamiltonian for the generation of quantum entanglement and manifestation of observable correlations between different measurement outcomes. Employing a quantitative measure of entanglement based on Schmidt decomposition, we show that quantum evolution governed only by internal Hamiltonians for the individual quantum subsystems preserves quantum coherence of separable initial quantum states, but eliminates the possibility of any interaction and quantum entanglement. The presence of non-zero interaction Hamiltonian, however, allows for decoherence of the individual quantum subsystems along with their mutual interaction and quantum entanglement. The presented results show that quantum coherence of individual subsystems cannot be used for cognitive binding because it is a physical mechanism that leads to separability and non-interaction. In contrast, quantum interactions with their associated decoherence of individual subsystems are instrumental for dynamical changes in the quantum entanglement of the composite quantum state vector and manifested correlations of different observable outcomes. Thus, fast decoherence timescales could assist cognitive binding through quantum entanglement across extensive neural networks in the brain cortex.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
John Terning ◽  
Christopher B. Verhaaren

Abstract Theories with both electric and magnetic charges (“mutually non-local” theories) have several major obstacles to calculating scattering amplitudes. Even when the interaction arises through the kinetic mixing of two, otherwise independent, U(1)’s, so that all low-energy interactions are perturbative, difficulties remain: using a self-dual, local formalism leads to spurious poles at any finite order in perturbation theory. Correct calculations must show how the spurious poles cancel in observable scattering amplitudes. Consistency requires that one type of charge is confined as a result of one of the U(1)’s being broken. Here we show how the constraints of confinement and parity conservation on observable processes manages to cancel the spurious poles in scattering and pair production amplitudes, paving the way for systematic studies of the experimental signatures of “dark” electric-magnetic processes. Along the way we demonstrate some novel effects in electric-magnetic interactions, including that the amplitude for single photon production of magnetic particles by electric particles vanishes.


2018 ◽  
Vol 64 (1) ◽  
pp. 18
Author(s):  
G. Gómez ◽  
I. Kotsireas ◽  
I. Gkigkitzis ◽  
I. Haranas ◽  
M.J. Fullana

Weintend to use the description oftheelectron orbital trajectory in the de Broglie-Bohm (dBB) theory to assimilate to a geodesiccorresponding to the General Relativity (GR) and get from itphysicalconclusions. ThedBBapproachindicatesustheexistenceof a non-local quantumfield (correspondingwiththequantumpotential), anelectromagneticfield and a comparativelyveryweakgravitatoryfield, togetherwith a translationkineticenergyofelectron. Ifweadmitthatthosefields and kineticenergy can deformthespace time, according to Einstein'sfield equations (and to avoidtheviolationoftheequivalenceprinciple as well), we can madethehypothesisthatthegeodesicsof this space-time deformation coincide withtheorbitsbelonging to thedBBapproach (hypothesisthat is coherentwiththestabilityofmatter). Fromit, we deduce a general equation that relates thecomponentsofthemetric tensor. Thenwe find anappropriatemetric for it, bymodificationofanexactsolutionofEinstein'sfield equations, whichcorresponds to dust in cylindricalsymmetry. Thefoundmodelproofs to be in agreementwiththebasicphysicalfeaturesofthehydrogenquantum system, particularlywiththeindependenceoftheelectronkineticmomentum in relationwiththeorbit radius. Moreover, themodel can be done Minkowski-like for a macroscopicshortdistancewith a convenientelectionof a constant. According to this approach, theguiding function ofthewaveontheparticlecould be identifiedwiththedeformationsofthespace-time and thestabilityofmatterwould be easilyjustifiedbythe null accelerationcorresponding to a geodesicorbit.


Author(s):  
Espen Haug

We have recently presented a unified quantum gravity theory [1]. Here we extend on that work and present an even simpler version of that theory. For about hundred years, modern physics has not been able to build a bridge between quantum mechanics and gravity. However, a solution may be found here; we present our quantum gravity theory, which is rooted in indivisible particles where matter and gravity are related to collisions and can be described by collision space-time. In this paper, we also show that we can formulate a quantum wave equation rooted in collision space-time, which is equivalent to mass and energy.The beauty of our theory is that most of the main equations that currently exist in physics are not changed (in terms of predictions), except at the Planck scale. The Planck scale is directly linked to gravity and gravity is, surprisingly, actually a Lorentz symmetry as well as a form of Heisenberg uncertainty break down at the Planck scale. Our theory gives a dramatic simplification of many physics formulas without altering the output predictions. The relativistic wave equation, the relativistic energy momentum relation, and Minkowski space can all be represented by simpler equations when we understand mass at a deeper level. This not attained at a cost, but rather a reflection of the benefit in having gravity and electromagnetism unified under the same theory.


Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1078
Author(s):  
Dimitrios Maroulakos ◽  
Levan Chotorlishvili ◽  
Dominik Schulz ◽  
Jamal Berakdar

Symmetry plays the central role in the structure of quantum states of bipartite (or many-body) fermionic systems. Typically, symmetry leads to the phenomenon of quantum coherence and correlations (entanglement) inherent to quantum systems only. In the present work, we study the role of symmetry (i.e., quantum correlations) in invasive quantum measurements. We consider the influence of a direct or indirect measurement process on a composite quantum system. We derive explicit analytical expressions for the case of two quantum spins positioned on both sides of the quantum cantilever. The spins are coupled indirectly to each others via their interaction with a magnetic tip deposited on the cantilever. Two types of quantum witnesses can be considered, which quantify the invasiveness of a measurement on the systems’ quantum states: (i) A local quantum witness stands for the consequence on the quantum spin states of a measurement done on the cantilever, meaning we first perform a measurement on the cantilever, and subsequently a measurement on a spin. (ii) The non-local quantum witness signifies the response of one spin if a measurement is done on the other spin. In both cases the disturbance must involve the cantilever. However, in the first case, the spin-cantilever interaction is linear in the coupling constant Ω , where as in the second case, the spin-spin interaction is quadratic in Ω . For both cases, we find and discuss analytical results for the witness.


Sign in / Sign up

Export Citation Format

Share Document