Spherically symmetric static matter configurations with vanishing radial pressure

2014 ◽  
Vol 24 (01) ◽  
pp. 1550002 ◽  
Author(s):  
S. Thirukkanesh ◽  
M. Govender ◽  
D. B. Lortan

We present a new family of spherically symmetric, static solutions of the Einstein field equations in isotropic, comoving coordinates. The radial pressure at each interior point of these models vanishes yet equilibrium is still possible. The constant density Florides solution which describes the gravitational field inside an Einstein cluster is obtained as a special case of our solution-generating method. We show that our solutions can be utilized to model strange star candidates such as Her. X-1, SAX J1808.4-3658(SS2), SAX J1808.4-3658(SS1) and PSR J1614-2230.

1972 ◽  
Vol 25 (3) ◽  
pp. 299 ◽  
Author(s):  
MW Cook

Approximate solutions to the Einstein field equations are found which describe a spherically symmetric inhomogeneity in a general Robertson?Walker model, i.e. one with an arbitrary equation of state. The approximation hypothesis is that the pressure deviates only slightly from uniformity, and it is found that the density may have quite large local fluctuations, e.g. by a factor of 106 over a region 10-2 Mpc in diameter. Reference is made to observed data to determine which categories of stellar objects may be described by the results.


Solutions of the Einstein field equations are found for the problem of a sphere of constant density surrounded by matter of different constant density. The solutions are discussed and particular attention paid to the topology of the surrounding matter. The Schwarzschild, de Sitter, and Einstein solutions emerge as particular cases of the general problem.


1976 ◽  
Vol 31 (10) ◽  
pp. 1155-1159 ◽  
Author(s):  
F. Vollendorf

Abstract This article is based upon the idea to solve the problem of combining the electromagnetic and the gravitational field by starting from Maxwell's theory. It is shown that the theory of the Maxwell field can be generalized in such a way that Einstein's theory of gravitation becomes a special case of it. Finally we find field equations which refer only to geometric quantities.


2020 ◽  
Vol 80 (11) ◽  
Author(s):  
Haroldo C. D. Lima Junior ◽  
Luís C. B. Crispino ◽  
Pedro V. P. Cunha ◽  
Carlos A. R. Herdeiro

AbstractObtaining solutions of the Einstein field equations describing spinning compact bodies is typically challenging. The Newman–Janis algorithm provides a procedure to obtain rotating spacetimes from a static, spherically symmetric, seed metric. It is not guaranteed, however, that the resulting rotating spacetime solves the same field equations as the seed. Moreover, the former may not be circular, and thus expressible in Boyer–Lindquist-like coordinates. Amongst the variations of the original procedure, a modified Newman–Janis algorithm (MNJA) has been proposed that, by construction, originates a circular, spinning spacetime, expressible in Boyer–Lindquist-like coordinates. As a down side, the procedure introduces an ambiguity, that requires extra assumptions on the matter content of the model. In this paper we observe that the rotating spacetimes obtained through the MNJA always admit separability of the Hamilton–Jacobi equation for the case of null geodesics, in which case, moreover, the aforementioned ambiguity has no impact, since it amounts to an overall metric conformal factor. We also show that the Hamilton–Jacobi equation for light rays propagating in a plasma admits separability if the plasma frequency obeys a certain constraint. As an illustration, we compute the shadow and lensing of some spinning black holes obtained by the MNJA.


2009 ◽  
Vol 18 (03) ◽  
pp. 389-396 ◽  
Author(s):  
UTPAL MUKHOPADHYAY ◽  
P. C. RAY ◽  
SAIBAL RAY ◽  
S. B. DUTTA CHOUDHURY

Einstein field equations under spherically symmetric space–times are considered here in connection with dark energy investigation. A set of solutions is obtained for a kinematic Λ model, viz. [Formula: see text], without assuming any a priori value for the curvature constant and the equation-of-state parameter ω. Some interesting results, such as the nature of cosmic density Ω and deceleration parameter q, have been obtained with the consideration of two-fluid structure instead of the usual unifluid cosmological model.


2006 ◽  
Vol 15 (07) ◽  
pp. 1053-1065 ◽  
Author(s):  
N. F. NAIDU ◽  
M. GOVENDER ◽  
K. S. GOVINDER

We study the effects of pressure anisotropy and heat dissipation in a spherically symmetric radiating star undergoing gravitational collapse. An exact solution of the Einstein field equations is presented in which the model has a Friedmann-like limit when the heat flux vanishes. The behavior of the temperature profile of the evolving star is investigated within the framework of causal thermodynamics. In particular, we show that there are significant differences between the relaxation time for the heat flux and the relaxation time for the shear stress.


2003 ◽  
Vol 12 (06) ◽  
pp. 1095-1112 ◽  
Author(s):  
METIN ARIK ◽  
OZGUR DELICE

We present cylindrically symmetric, static solutions of the Einstein field equations around a line singularity such that the energy momentum tensor corresponds to infinitely thin photonic shells. Positivity of the energy density of the thin shell and the line singularity is discussed. It is also shown that thick shells containing mostly radiation are possible in a numerical solution.


Sign in / Sign up

Export Citation Format

Share Document