scholarly journals Cosmological constraints on scalar field dark matter

Author(s):  
A. A. Escobal ◽  
J. F. Jesus ◽  
S. H. Pereira

This paper aims to put constraints on the parameters of the Scalar Field Dark Matter (SFDM) model, when dark matter is described by a free real scalar field filling the whole universe, plus a cosmological constant term. By using a compilation of 51 [Formula: see text] data and 1048 Supernovae data from Panteon, a mass range for the scalar field was obtained, [Formula: see text]eV, in good agreement with light mass axion particles. Also, we have obtained [Formula: see text], and the present dark matter density parameter [Formula: see text] at [Formula: see text] confidence level. These results are in good agreement to standard model of cosmology, showing that SFDM model is viable in describing the dark matter content of the universe.

1987 ◽  
Vol 117 ◽  
pp. 414-414
Author(s):  
Jonathan C. McDowell

It has been proposed (e.g. Carr, Bond and Arnett 1984) that the first generation of stars may have been Very Massive Objects (VMOs, of mass above 200 M⊙) which existed at large redshifts and left a large fraction of the mass of the universe in black hole remnants which now provide the dynamical ‘dark matter’. The radiation from these stars would be present today as extragalactic background light. For stars with density parameter Ω* which convert a fraction ϵ of their rest-mass to radiation at a redshift of z, the energy density of background radiation in units of the critical density is ΩR = εΩ* / (1+z). The VMOs would be far-ultraviolet sources with effective temperatures of 105 K. If the radiation is not absorbed, the constraints provided by measurements of background radiation imply (for H =50 km/s/Mpc) that the stars cannot close the universe unless they formed at a redshift of 40 or more. To provide the dark matter (of one-tenth closure density) the optical limits imply that they must have existed at redshifts above 25.


2013 ◽  
Vol 22 (14) ◽  
pp. 1350082 ◽  
Author(s):  
SHUO CAO ◽  
NAN LIANG

In order to test if there is energy transfer between dark energy (DE) and dark matter (DM), we investigate cosmological constraints on two forms of nontrivial interaction between the DM sector and the sector responsible for the acceleration of the universe, in light of the newly revised observations including OHD, CMB, BAO and SNe Ia. More precisely, we find the same tendencies for both phenomenological forms of the interaction term Q = 3γHρ, i.e. the parameter γ to be a small number, |γ| ≈ 10-2. However, concerning the sign of the interaction parameter, we observe that γ > 0 when the interaction between dark sectors is proportional to the energy density of dust matter, whereas the negative coupling (γ < 0) is preferred by observations when the interaction term is proportional to DE density. We further discuss two possible explanations to this incompatibility and apply a quantitative criteria to judge the severity of the coincidence problem. Results suggest that the γm IDE model with a positive coupling may alleviate the coincidence problem, since its coincidence index C is smaller than that for the γd IDE model, the interacting quintessence and phantom models by four orders of magnitude.


2020 ◽  
Author(s):  
◽  
Cari Powell

The aim of this research is to use modern techniques in scalar field Cosmol-ogy to produce methods of detecting gravitational waves and apply them to current gravitational waves experiments and those that will be producing results in the not too distant future. In the first chapter we discuss dark matter and some of its candidates, specifically, the axion. We then address its relationship with gravitational waves. We also discuss inflation and how it can be used to detect gravitational waves. Chapter 2 concentrates on constructing a multi field system of axions in order to increase the mass range of the ultralight axion, putting it into the observation range of pul-sar timing arrays. Chapter 3 discusses non-attractor inflation which is able to enhance stochastic background gravitational waves at scales that allows them to be measured by gravitational wave experiments. Chapter 4 uses a similar method to chapter 3 and applies it to 3-point overlap functions for tensor, scalar and a combination of the two polarisations.


2011 ◽  
Vol 20 (2) ◽  
Author(s):  
T. Sepp ◽  
E. Tempel ◽  
M. Gramann ◽  
P. Nurmi ◽  
M. Haupt

AbstractThe SDSS galaxy catalog is one of the best databases for galaxy distribution studies. The SDSS DR8 data is used to construct the galaxy cluster catalog. We construct the clusters from the calculated luminosity density field and identify denser regions. Around these peak regions we construct galaxy clusters. Another interesting question in cosmology is how observable galaxy structures are connected to underlying dark matter distribution. To study this we compare the SDSS DR7 galaxy group catalog with galaxy groups obtained from the semi-analytical Millennium N-Body simulation. Specifically, we compare the group richness, virial radius, maximum separation and velocity dispersion distributions and find a relatively good agreement between the mock catalog and observations. This strongly supports the idea that the dark matter distribution and galaxies in the semi-analytical models and observations are very closely linked.


2020 ◽  
Vol 496 (1) ◽  
pp. L91-L95 ◽  
Author(s):  
George Efstathiou ◽  
Steven Gratton

ABSTRACT We use a new and statistically powerful Planck likelihood to show that the Planck temperature and polarization spectra are consistent with a spatially flat Universe, in contrast to recent claims in the literature. When combined with other astrophysical data, particularly geometrical measurements of baryon acoustic oscillations, our likelihood constrains the Universe to be spatially flat to extremely high precision. We deduce a curvature density parameter ΩK = 0.0004 ± 0.0018 in good agreement with the 2018 results of the Planck team. In the context of inflationary cosmology, the observations offer strong support for models of inflation with a large number of e-foldings and disfavour models of incomplete inflation.


2006 ◽  
Vol 21 (15) ◽  
pp. 1241-1248 ◽  
Author(s):  
M. ARIK ◽  
M. C. ÇALIK

By using a linearized non-vacuum late time solution in Brans–Dicke cosmology, we account for the 75% dark energy contribution but not for approximately 23% dark matter contribution to the present day energy density of the universe.


2007 ◽  
Vol 16 (12a) ◽  
pp. 2055-2063 ◽  
Author(s):  
HONGSHENG ZHAO

The phenomena customarily described with the standard ΛCDM model are broadly reproduced by an extremely simple model in TeVeS, Bekenstein's1 modification of general relativity motivated by galaxy phenomenology. Our model can account for the acceleration of the Universe seen at SNeIa distances without a cosmological constant, and the accelerations seen in rotation curves of nearby spiral galaxies and gravitational lensing of high-redshift elliptical galaxies without cold dark matter. The model is consistent with BBN and the neutrino mass between 0.05 eV to 2 eV. The TeVeS scalar field is shown to play the effective dual roles of dark matter and dark energy, with the amplitudes of the effects controlled by a μ function of the scalar field, called the μ essence here. We also discuss outliers to the theory's predictions on multiimaged galaxy lenses and outliers on the subgalaxy scale.


2015 ◽  
Vol 24 (13) ◽  
pp. 1545005 ◽  
Author(s):  
K. M. Belotsky ◽  
A. A. Kirillov ◽  
S. G. Rubin

Here, we briefly discuss the possibility to solve simultaneously with primordial black holes (PBHs) the problems of dark matter (DM), reionization of the universe, origin of positron line from Galactic center and supermassive black hole (BH) in it. Discussed scenario can naturally lead to a multiple-peak broad-mass-range distribution of PBHs in mass, which is necessary for simultaneous solution of the problems.


Author(s):  
V. Zhdanov ◽  
A. Alexandrov ◽  
O. Stashko

We consider a homogeneous isotropic Universe filled with cold matter (with zero pressure) and dynamic dark energy in a form of a scalar field. For known scalar field potential V(φ), the Friedmann equations are reduced to a system of the first order equation for the Hubble parameter H(z) and the second order equation for the scalar field as functions of the redshift z. On the other hand, knowledge of H(z) allows us to get the scalar field potential in a parametric form for a known cold matter content and three dimensional curvature parameter. We analyze when the accepted model mimics the dependence H(z) derived in the framework of the other models, e.g., hydrodynamic ones. Two examples of this mimicry are considered. The first one deals with the case when H2(z)~ Ωm(1+z)3+ΩΛ, but Ωm parameter overestimates the input of the cold matter (dark matter+baryons). The resulting scalar field potential is V(φ)=a+bsinh2(cφ), where the constants a,b,c depend on the Ω – parameters of the problem. In the other example we assume that some part of the dark matter has a non-zero equation of state p=wε, -1<w<1. In this case H2(z)~ Ωdm1(1+z)3(1+w)+ Ωb+Ωdm2)(1+z)3+ΩΛ. The corresponding potentials are defined for positive values of φ. For both signs of w potential V(φ) is a monotonically increasing function with typically an asymptotically exponential behavior; though for some choice of parameters we may have a singularity of V(φ)on a finite interval. Then we consider fitting of the potential for w from the interval [-0.2,0.2] for three different values of Ωdm2 by means of a simple formula Vfit(φ)=p0+p1exp(p2 φ). The dependencies pi(w) are presented and the approximation error is estimated.


Sign in / Sign up

Export Citation Format

Share Document