flat universe
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 19)

H-INDEX

27
(FIVE YEARS 2)

Author(s):  
Umesh Kumar Sharma ◽  
Vipin Chandra Dubey ◽  
A. H. Ziaie ◽  
H. Moradpour

Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 445
Author(s):  
Fabao Gao ◽  
Jaume Llibre

When the cosmological constant is non-zero, the dynamics of the cosmological model based on Hořava–Lifshitz gravity in a non-flat universe are characterized by using the qualitative theory of differential equations.


2021 ◽  
Vol 2021 (11) ◽  
pp. 060
Author(s):  
Javier E. Gonzalez ◽  
Micol Benetti ◽  
Rodrigo von Marttens ◽  
Jailson Alcaniz

Abstract The results of joint analyses of available cosmological data have motivated an important debate about a possible detection of a non-zero spatial curvature. If confirmed, such a result would imply a change in our present understanding of cosmic evolution with important theoretical and observational consequences. In this paper we discuss the legitimacy of carrying out joint analyses with the currently available data sets and explore their implications for a non-flat universe and extensions of the standard cosmological model. We use a robust tension estimator to perform a quantitative analysis of the physical consistency between the latest data of Cosmic Microwave Background, type Ia supernovae, Baryonic Acoustic Oscillations and Cosmic Chronometers. We consider the flat and non-flat cases of the ΛCDM cosmology and of two dark energy models with a constant and varying dark energy EoS parameter. The present study allows us to better understand if possible inconsistencies between these data sets are significant enough to make the results of their joint analyses misleading, as well as the actual dependence of such results with the spatial curvature and dark energy parameterizations. According to our results, we conclude that a joint analysis in the context of a non-flat universe including the CMB data is only possible if the CMB Lens is taken into account, otherwise, it potentially leads to misleading conclusions.


Author(s):  
T. Toghrai ◽  
N. Mansour ◽  
A. K. Daoudia ◽  
A. El Boukili ◽  
M. B. Sedra

In this work, we propose a model of noncommutative cosmology through the deformation of minisuperspace. We focus on an exponentially potential with a homogeneous scalar field minimally coupled to gravity in the spatially flat universe. To process, we use a particular case of noncommutativity by making a deformation of space coordinates only. Then, we compare results in both the commutative model and the noncommutative one.


2021 ◽  
Vol 503 (2) ◽  
pp. 2179-2186
Author(s):  
Jing-Zhao Qi ◽  
Jia-Wei Zhao ◽  
Shuo Cao ◽  
Marek Biesiada ◽  
Yuting Liu

ABSTRACT Although the Hubble constant H0 and spatial curvature ΩK have been measured with very high precision, they still suffer from some tensions. In this paper, we propose an improved method to combine the observations of ultracompact structure in radio quasars and strong gravitational lensing with quasars acting as background sources to determine H0 and ΩK simultaneously. By applying the distance sum rule to the time-delay measurements of seven strong lensing systems and 120 intermediate-luminosity quasars calibrated as standard rulers, we obtain stringent constraints on the Hubble constant (H0 = 78.3 ± 2.9 km s−1 Mpc−1) and the cosmic curvature (ΩK = 0.49 ± 0.24). On the one hand, in the framework of a flat universe, the measured Hubble constant ($H_0=73.6^{+1.8}_{-1.6} \mathrm{\,km\,s^{-1}\,Mpc^{-1}}$) is strongly consistent with that derived from the local distance ladder, with a precision of 2 per cent. On the other hand, if we use the local H0 measurement as a prior, our results are marginally compatible with zero spatial curvature ($\Omega _K=0.23^{+0.15}_{-0.17}$) and there is no significant deviation from a flat universe. Finally, we also evaluate whether strongly lensed quasars would produce robust constraints on H0 and ΩK in the non-flat and flat Λ cold dark matter model, if the compact radio structure measurements are available from very long baseline interferometry observations.


2020 ◽  
Vol 44 (10) ◽  
pp. 105104
Author(s):  
Chao-Qiang Geng ◽  
Yan-Ting Hsu ◽  
Lu Yin ◽  
Kaituo Zhang
Keyword(s):  

2020 ◽  
Vol 12 (4) ◽  
pp. 569-574
Author(s):  
C. Sivakumar ◽  
R. Francis

A slightly different power law-scaling fits to the picture of our 13.7 billion years old flat universe which is expanding presently at 67 km/s/Mpc with an acceleration. The model which is an attempt to retain power-law scaling in the light of the accepted facts about the universe we are living in, has a constant effective equation of state parameter as the cosmic fluid is a solution of matter, radiation and dark energy. It is successful in explaining the acceleration of universe which the normal power law fails if the present Hubble parameter is 67 km/s/Mpc and age of the universe is 13.7 billion years, and it is free from the defect of singularity.


Sign in / Sign up

Export Citation Format

Share Document