scholarly journals Experimental Test of Spontaneous Correlation and Anomalous Sensitivity in Finite Highly Excited Many-Body Systems

2003 ◽  
Vol 12 (03) ◽  
pp. 377-393 ◽  
Author(s):  
Qi Wang ◽  
Sergey Yu Kun ◽  
Wendong Tian ◽  
Songlin Li ◽  
Zhonghe Jiang ◽  
...  

We have tested recent suggestion of anomalous sensitivity in highly excited quantum many-body systems. Two independent measurements of cross sections for the 19 F + 93 Nb strongly dissipative heavy-ion collisions have been performed at incident energies from 102 to 108 MeV in steps of 250 keV. In the two measurements we used different, independently prepared, 93Nb target foils with nominally the same thickness. The data indicate statistically significant non-reproducibility of the energy oscillating yields in the two measurements. The observed non-reproducibility is consistent with recent theoretical arguments on spontaneous correlation, slow phase randomization and chaos in highly excited complex quantum systems.

1985 ◽  
Vol 63 (9) ◽  
pp. 1242-1248 ◽  
Author(s):  
P. A. Deutchman ◽  
J. W. Norbury ◽  
L. W. Townsend

A quantal many-body formalism is presented that investigates pion production through the coherent formation of a nucleonic isobar in the projectile and its subsequent decay to various pion charge states along with concomitant excitation of the target to a coherent spin–isospin giant resonance via a peripheral collision of relativistic heavy ions. Total cross sections as a function of the incident energy per nucleon and Lorentz-invariant differential cross sections as a function of pion energy and angle are calculated. It is shown that the pion angular distributions, in coincidence with the target giant resonance excitations, might provide a well-defined signature for these coherent processes.


2013 ◽  
Vol 28 (21) ◽  
pp. 1330018 ◽  
Author(s):  
ENRICO SCOMPARIN

Heavy quarkonium states are considered as one of the key observables for the study of the phase transition from a system made of hadrons towards a Quark–Gluon Plasma (QGP). In the last 25 years, experiments at CERN and Brookhaven have studied collisions of heavy ions looking for a suppression of charmonia/bottomonia, considered as a signature of the phase transition. After an introduction to the main concepts behind these studies and a short review of the SPS and RHIC results, I will describe the results obtained in Pb – Pb collisions by the ALICE experiment at the LHC. The ALICE findings will be critically compared to those of lower energy experiments, to CMS results, and to model calculations. The large cross-sections for heavy-quark production at LHC energies are expected to induce a novel production mechanism for charmonia in heavy-ion collisions, related to a recombination of [Formula: see text] pairs along the history of the collision and/or at hadronization. The occurrence of such a process at the LHC will be discussed. Finally, prospects for future measurements will be shortly addressed.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1796
Author(s):  
Klaus Ziegler

The diagonal elements of the time correlation matrix are used to probe closed quantum systems that are measured at random times. This enables us to extract two distinct parts of the quantum evolution, a recurrent part and an exponentially decaying part. This separation is strongly affected when spectral degeneracies occur, for instance, in the presence of spontaneous symmetry breaking. Moreover, the slowest decay rate is determined by the smallest energy level spacing, and this decay rate diverges at the spectral degeneracies. Probing the quantum evolution with the diagonal elements of the time correlation matrix is discussed as a general concept and tested in the case of a bosonic Josephson junction. It reveals for the latter characteristic properties at the transition to Hilbert-space localization.


1989 ◽  
Vol 504 (4) ◽  
pp. 864-874 ◽  
Author(s):  
Joachim Thiel ◽  
Thomas Lippert ◽  
Norbert Grün ◽  
Werner Scheid

Proceedings ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 24
Author(s):  
Sebastian Scheid

The ALICE Collaboration measured dielectron production as a function of the invariant mass ( m ee ), the pair transverse momentum ( p T , ee ) and the pair distance of closest approach ( DCA ee ) in pp collisions at s = 7 TeV. Prompt and non-prompt dielectron sources can be separated with the DCA ee , which will give the opportunity in heavy-ion collisions to identify thermal radiation from the medium in the intermediate-mass range dominated by contributions from open-charm and beauty hadron decays. The charm and beauty total cross sections are extracted from the data by fitting the spectra with two different MC generators, i.e., PYTHIA a leading order event generator and POWHEG a next-to-leading order event generator. Significant model dependences are observed, reflecting the sensitivity of this measurement to the heavy-flavour production mechanisms.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Shusu Shi

Strange hadrons, especially multistrange hadrons, are good probes for the early partonic stage of heavy ion collisions due to their small hadronic cross sections. In this paper, I give a brief review on the elliptic flow measurements of strange and multistrange hadrons in relativistic heavy ion collisions at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC).


2009 ◽  
Vol 18 (04) ◽  
pp. 841-849 ◽  
Author(s):  
AVAZBEK NASIROV ◽  
GIOVANNI FAZIO ◽  
GIORGIO GIARDINA ◽  
GIUSEPPE MANDAGLIO ◽  
MARINA MANGANARO ◽  
...  

The decrease of the evaporation residue yields in reactions with massive nuclei is explained by an increase of the competition between quasifission and complete fusion processes and by the decrease of the survival probability of the heated and rotating nuclei against fission along the de-excitation cascade of the compound nucleus. The experimental data on the yields of evaporation residue, fusion-fission and quasifission fragments in the 48 Ca + 154 Sm reaction are analyzed in the framework of the combined theoretical method based on the dinuclear system concept and advanced statistical model. The measured yields of evaporation residues of the 48 Ca + 154 Sm reaction have been well reproduced and yields of fission fragments were analyzed using the partial fusion and quasifission cross sections calculated in the dinuclear system model. Such a way of calculation is used to find optimal conditions for the synthesis of the new element Z = 120 (A = 302) by studying the excitation functions of evaporation residues of the 54 Cr + 248 Cm , 58 Fe + 244 Pu , and 64 Ni + 238 U reactions. Our estimations show that the 54 Cr + 248 Cm reaction is preferable in comparison with the two others.


Sign in / Sign up

Export Citation Format

Share Document