Effect of entrance channel on dynamics of heavy ions collision

2016 ◽  
Vol 25 (01) ◽  
pp. 1650005
Author(s):  
D. Naderi

A combined dynamical model using concept of dinuclear systems (DNS) and one-dimensional (1D) Langevin equations was applied to investigate the effect of entrance channel on dynamics of heavy ions collision. The [Formula: see text]Si+[Formula: see text]Er, [Formula: see text]O+[Formula: see text]W and [Formula: see text]F+[Formula: see text]Ta reactions which formed the compound nucleus [Formula: see text]Pb have been considered to study this effect. We studied these reactions dynamically and calculated the ratio of evaporation residue cross-section to fusion cross-section [Formula: see text] as a tool for investigation of entrance channel effect. Results of combined model are compared with available experimental data and results of 1D Langevin equations. Obtained results based on combined model are in better agreement with experimental data in comparison with results of Langevin equations. We concluded for [Formula: see text]Si+[Formula: see text]Er and [Formula: see text]F+[Formula: see text]Ta reactions the results of combined model that support the quasi-fission process are different relative to Langevin dynamical approach, whereas for [Formula: see text]O+[Formula: see text]W system the two models give similar results.

2015 ◽  
Vol 11 (2) ◽  
pp. 2972-2978
Author(s):  
Fouad A. Majeed ◽  
Yousif A. Abdul-Hussien

In this study the calculations of the total fusion reaction cross section have been performed for fusion reaction systems 17F + 208Pb and 15C + 232Th which involving halo nuclei by using a semiclassical approach.The semiclassical treatment is comprising the WKB approximation to describe the relative motion between target and projectile nuclei, and Continuum Discretized Coupled Channel (CDCC) method to describe the intrinsic motion for both target and projectile nuclei. For the same of comparsion a full quantum mechanical clacualtions have been preforemd using the (CCFULL) code. Our theorticalrestuls are compared with the full quantum mechaincialcalcuations and with the recent experimental data for the total fusion reaction  checking the stability of the distancesThe coupled channel calculations of the total fusion cross section σfus, and the fusion barrier distribution Dfus. The comparsion with experiment proves that the semiclassiacl approach adopted in the present work reproduce the experimental data better that the full quantal mechanical calcautions. 


2019 ◽  
Vol 28 (07) ◽  
pp. 1950056 ◽  
Author(s):  
T. V. Nhan Hao ◽  
N. N. Duy ◽  
K. Y. Chae ◽  
N. Quang Hung ◽  
N. Nhu Le

In this paper, we applied the method developed by Santhosh and Safoora in [Phys. Rev. C  94 (2016) 024623; 95 (2017) 064611] to theoretically investigate the fusion, evaporation-residue (ER) and fission cross-sections of the synthesis of the unknown superheavy [Formula: see text]126 nuclei produced by using the [Formula: see text]Ni + [Formula: see text]Cf and [Formula: see text]Zn + [Formula: see text]Cm combinations. The charge asymmetry, mass asymmetry and fissility of the DiNuclear System (DNS) in the synthesis of the mentioned combinations are also estimated. The calculated results show that the ER cross-sections for the synthesis of the [Formula: see text]126 nuclei are predicted to be much less than 1.0[Formula: see text]fb. In particular, it has been found that there may exist a valley of the ER cross-sections in the synthesis of a superheavy [Formula: see text] element, which produces the [Formula: see text]126 isotope. Subsequently, a model for the mass dependence of the ER cross-section in the synthesis of the [Formula: see text]126 isotopes has been proposed for the first time. On the other hand, the quasi-fission process strongly dominates over the fusion in the two concerned interacting systems. The present results, together with those reported in the previous studies, indicate that the investigated projectile–target combinations are not capable for the synthesis of the [Formula: see text]126 isotopes due to tiny fusion cross-sections (about 2–3[Formula: see text]zb), which go beyond the limitations of available facilities. Further studies are thus recommended to search for alternative interacting systems. In conclusion, this work provides useful information for the synthesis of the gap isotopes [Formula: see text]126, which have not been well studied up to date.


2017 ◽  
Vol 163 ◽  
pp. 00018 ◽  
Author(s):  
Guillaume Fruet ◽  
Sandrine Courtin ◽  
David G. Jenkins ◽  
Marcel Heine ◽  
Daniele Montanari ◽  
...  

2003 ◽  
Vol 12 (06) ◽  
pp. 863-873 ◽  
Author(s):  
M. ISMAIL ◽  
M. OSMAN ◽  
KH. A. RAMADAN ◽  
W. SEIF

The effect of both rotation and vibration of a deformed target nucleus on the fusion cross-section and barrier distributions was studied. This was done in the framework of the microscopically derived heavy-ion (HI) potential. Moreover, the effect of target deformation up to β6 and the density dependence of the NN force on the fusion process was studied in the presence of vibrational excitations of the target. The results obtained were compared with experimental data.


2020 ◽  
Vol 29 (03) ◽  
pp. 2050016
Author(s):  
R. R. Swain ◽  
C. Dash ◽  
P. Mohanty ◽  
B. B. Sahu

In nucleus–nucleus collisions, the partial-wave scattering matrix, for the total effective complex potential is calculated, which explains the data of angular distribution of elastic scattering cross-sections. Furthermore the absorption cross-section is obtained from the arbitrarily small intervals which helps to derive the fusion cross-section ([Formula: see text]) data at different center-of-mass energies ([Formula: see text]) by collecting the absorption contributions in the interior region of the effective potential. Here, the potential is taken as energy independent and its weakly absorbing nature supports the resonance states in various partial-wave trajectories. Therefore, the resonances show oscillatory behavior changes with respect to energy [Formula: see text], which is the second derivative of the product [Formula: see text] with respect to [Formula: see text]. In this paper, we have successfully discussed the elastic scattering and fusion cross-sections simultaneously with the results of [Formula: see text].


Open Physics ◽  
2014 ◽  
Vol 12 (6) ◽  
Author(s):  
Tapan Rajbongshi ◽  
Kushal Kalita

AbstractThe influence of static quadrupole and hexadecapole (positive & negative) deformation of targets are studied using eleven different versions of nuclear potentials. The height and position of the interaction barrier for the reactions induced by spherical projectile (16O) on the deformed targets such as 166Er, 154Sm and 176Yb have been estimated. It is found that the nucleus-nucleus potential strongly depends on the value of the deformation parameters and orientation of the target. The experimental fusion cross-section of the reactions 16O + 176Yb, 16O +166Er and 16O +154Sm are investigated by applyingWong’s formula using various parameterizations of the proximity potential as well as an assessment of the results of a multi-dimensional barrier penetration model (BPM). The fusion cross-sections by Prox 77, Prox 88, Prox 00, Prox 00DP, Denisov DP, Bass 80, CW 76 and AW 95 potentials are found to be better than the rest in comparison to experimental data.


2016 ◽  
Vol 6 (01) ◽  
pp. 50
Author(s):  
Muhammad Zamrun Firihu ◽  
Viska Inda Variani ◽  
J Justina

The numerical simulation for calculating the cross section of fusion reaction is done by using Wong formula. We especially calculated the cross section for the fusion reaction of light systems, i.e. 12C+12C, 16O+12C and 16O+16O reactions. We compared the obtained cross section with experimental data. In order to check the accuracy of the calculations, the chi-square analisys is then permormed. We found that the simulation results of the fusion cross section obtained using Wong Formula well explain the experimetal data of the fusion cross section for the 12C+12C, 16O+12C and 16O+16O reactions. This finding indicates that the Wong formula can be used for studing the fusion reaction of light systems.


2008 ◽  
Vol 17 (10) ◽  
pp. 2194-2198
Author(s):  
ALEXIS DIAZ-TORRES ◽  
LEANDRO ROMERO GASQUES ◽  
MICHAEL WIESCHER

The astrophysical S -factor for 16 O +16 O is investigated within the adiabatic molecular picture. It very well explains the available experimental data. The collective radial mass causes a pronounced resonant structure in the S -factor excitation function, providing a motivation for measuring the 16 O +16 O fusion cross section at deep sub-barrier energies


Sign in / Sign up

Export Citation Format

Share Document