Structural properties and decay modes of Z = 122, 120 and 118 superheavy nuclei

2019 ◽  
Vol 28 (01n02) ◽  
pp. 1950008 ◽  
Author(s):  
G. Saxena ◽  
M. Kumawat ◽  
S. Somorendro Singh ◽  
Mamta Aggarwal

Structural properties and the decay modes of the superheavy elements [Formula: see text] and 118 are studied in a microscopic framework. We evaluate the binding energy, one- and two- proton and neutron separation energy, shell correction and density profile of even and odd isotopes of [Formula: see text] [Formula: see text] which show a reasonable match with FRDM results and the available experimental data. Equilibrium shape and deformation of the superheavy region are predicted. We investigate the possible decay modes of this region specifically [Formula: see text]-decay, spontaneous fission (SF) and the [Formula: see text]-decay and evaluate the probable [Formula: see text]-decay chains. The phenomena of bubble like structure in the charge density is predicted in [Formula: see text], [Formula: see text] and [Formula: see text] with significant depletion fraction around 20–24% which increases with increasing Coulomb energy and diminishes with increasing isospin ([Formula: see text]) values exhibiting the fact that the coulomb forces are the main driving force in the central depletion in superheavy systems.

2018 ◽  
Vol 27 (09) ◽  
pp. 1850074 ◽  
Author(s):  
G. Saxena ◽  
U. K. Singh ◽  
M. Kumawat ◽  
M. Kaushik ◽  
S. K. Jain ◽  
...  

A fully systematic study of even and odd isotopes [Formula: see text] of [Formula: see text] superheavy nuclei is presented in theoretical frameworks of Relativistic mean-field plus state dependent BCS approach and macroscopic–microscopic approach with triaxially deformed Nilsson-Strutinsky prescription. The ground state properties namely shell correction, binding energy, two- and one-proton and neutron separation energy, shape, deformation, density profile and the radius are estimated that show strong evidences for magicity in [Formula: see text], 228. Central depletion in the charge density due to large repulsive Coulomb field indicating bubble like structure is reported. A comprehensive analysis for the possible decay modes specifically [Formula: see text]-decay and spontaneous fission (SF) is presented and the probable [Formula: see text]-decay chains are evaluated. Results are compared with Finite Range Droplet Model (FRDM) calculations and the available experimental data which show excellent agreement.


2020 ◽  
Vol 29 (10) ◽  
pp. 2050087
Author(s):  
N. Sowmya ◽  
H. C. Manjunatha ◽  
P. S. Damodara Gupta

In this work, we have made an attempt to study the cluster-decay half-lives and alpha-decay half-lives of the superheavy nuclei [Formula: see text]Og by considering the temperature-dependent (TD) and also temperature-independent (TID) proximity potential model. The evaluated half-lives were compared with that of the experiments. To predict the decay modes, we have compared the cluster-decay half-lives and alpha-decay half-lives with that of spontaneous fission half-lives. This work also predicts the decay chains of the superheavy nuclei [Formula: see text]Og and finds an importance in the synthesis of further isotopes of superheavy element Oganesson.


Author(s):  
H. C. Manjunatha ◽  
S. Alfred Cecil Raj ◽  
A. M. Nagaraja ◽  
N. Sowmya

Cluster radioactivity is an intermediate between alpha decay and spontaneous fission. It is also an exotic decay obtained in superheavy nuclei. When a cluster decay is detected in superheavy nuclei, the daughter nuclei is having near or equal to doubly magic nuclei. We have investigated cluster decay of isotopes of He, Li, Be, Ne, N, Mg, Si, P, S, Cl, Ar and Ca in the superhaevy nuclei region 299-306122. We have also compared the logarithmic half-lives of cluster decay with that of other models such as Univ [1], NRDX [2], UDL [3] and Horoi [4]. From this study it is concluded that  cluster decay of 4He, 22Ne, 26Mg, 28Si 30Si, 34S, 40Ca and 46Ca are having shorter logarithmic half-lives compared to exotic cluster decay modes.


2018 ◽  
Vol 27 (05) ◽  
pp. 1850041 ◽  
Author(s):  
H. C. Manjunatha ◽  
N. Sowmya

It is important to study the different decay modes of superheavy nuclei such as spontaneous fission, ternary fission and cluster decay. We studied the spontaneous fission, ternary fission and cluster decay of predicted isotopes of superheavy nuclei [Formula: see text] and compared with that of alpha decay. This enables us to study the competition between spontaneous fission, ternary fission, cluster decay and alpha decay in the superheavy nuclei [Formula: see text]. We have studied the half-lives and decay constants of different decay modes. We have also studied the branching ratio of alpha decay with respect to other decay modes. This study reveals that alpha decay is the most dominant decay mode for the superheavy nuclei [Formula: see text] and hence these nuclei can be detected through the alpha decay mode only.


1993 ◽  
Vol 02 (04) ◽  
pp. 789-807
Author(s):  
D. CALEB CHANTHI RAJ ◽  
M. RAJASEKARAN ◽  
R. PREMANAND

A new formula to obtain shell correction to separation energy is derived from a Strutinsky type calculation. A systematic analysis of shell and deformation effects on nucleon separation energy is made. Spin induced structural changes are also evident in shape changes along the spin coordinate. Calculations are performed for a wide range of nuclei from Zr to Cm. The results are generally in very good agreement with experimental analysis.


1979 ◽  
Vol 34 (12) ◽  
pp. 1536-1537
Author(s):  
T. Borello-Lewin ◽  
O. Dietzsch

Abstract Neutron separation energies in 91Zr, 92Zr, 93Zr and 95Zr were determined by measurements of relative Q-values for (d, p) reactions on Zr isotopes. A comparison is made with separation energies derived from a previous measurement of (d, t) reaction Q-values. The neutron separation energy in 95Zr disagrees by three standard deviations with the adjusted value in the 1977 Atomic Mass Evaluation.


2020 ◽  
Vol 29 (06) ◽  
pp. 2050030
Author(s):  
A. Vinayak ◽  
M. M. Hosamani ◽  
P. N. Patil ◽  
N. M. Badiger

The spectroscopic factor (SF) of doubly-magic nuclei, neutron shell closed and neutron-rich nuclei has been determined through ([Formula: see text], [Formula: see text]) reaction in the projectile energy range from 3 to 26[Formula: see text]MeV. The theoretical angular differential cross-sections of ([Formula: see text], [Formula: see text] reactions in scattering center-of-mass angles from [Formula: see text] to [Formula: see text] have been calculated using FRESCO and NRV-DWUCK5 codes. By comparing the theoretical angular differential cross-sections with available experimental angular differential cross-sections, the values of SF have been determined. The exponential increase of SF as a function of neutron separation energy normalized by spin of the recoil nuclei has been shown for the first time for doubly-magic nuclei. The similar type of trend has also been observed for neutron-rich as well as neutron shell closed nuclei as a function of neutron separation energy normalized by asymmetric factor of recoil nucleus. More experimental data are required to verify the trend predicted by this investigation.


2013 ◽  
Vol 22 (04) ◽  
pp. 1350018 ◽  
Author(s):  
S. K. SINGH ◽  
S. MAHAPATRO ◽  
R. N. MISHRA

We study the extremely neutron-rich nuclei for Z = 17–23, 37–40 and 60–64 regions of the periodic table by using axially deformed relativistic mean field formalism with NL3* parametrization. Based on the analysis of binding energy, two neutron separation energy, quadrupole deformation and root mean square radii, we emphasized the speciality of these considered regions which are recently predicted islands of inversion.


Sign in / Sign up

Export Citation Format

Share Document