scholarly journals Distinct ground state features and the decay chains of Z = 121 superheavy nuclei

2018 ◽  
Vol 27 (09) ◽  
pp. 1850074 ◽  
Author(s):  
G. Saxena ◽  
U. K. Singh ◽  
M. Kumawat ◽  
M. Kaushik ◽  
S. K. Jain ◽  
...  

A fully systematic study of even and odd isotopes [Formula: see text] of [Formula: see text] superheavy nuclei is presented in theoretical frameworks of Relativistic mean-field plus state dependent BCS approach and macroscopic–microscopic approach with triaxially deformed Nilsson-Strutinsky prescription. The ground state properties namely shell correction, binding energy, two- and one-proton and neutron separation energy, shape, deformation, density profile and the radius are estimated that show strong evidences for magicity in [Formula: see text], 228. Central depletion in the charge density due to large repulsive Coulomb field indicating bubble like structure is reported. A comprehensive analysis for the possible decay modes specifically [Formula: see text]-decay and spontaneous fission (SF) is presented and the probable [Formula: see text]-decay chains are evaluated. Results are compared with Finite Range Droplet Model (FRDM) calculations and the available experimental data which show excellent agreement.

2019 ◽  
Vol 28 (01n02) ◽  
pp. 1950008 ◽  
Author(s):  
G. Saxena ◽  
M. Kumawat ◽  
S. Somorendro Singh ◽  
Mamta Aggarwal

Structural properties and the decay modes of the superheavy elements [Formula: see text] and 118 are studied in a microscopic framework. We evaluate the binding energy, one- and two- proton and neutron separation energy, shell correction and density profile of even and odd isotopes of [Formula: see text] [Formula: see text] which show a reasonable match with FRDM results and the available experimental data. Equilibrium shape and deformation of the superheavy region are predicted. We investigate the possible decay modes of this region specifically [Formula: see text]-decay, spontaneous fission (SF) and the [Formula: see text]-decay and evaluate the probable [Formula: see text]-decay chains. The phenomena of bubble like structure in the charge density is predicted in [Formula: see text], [Formula: see text] and [Formula: see text] with significant depletion fraction around 20–24% which increases with increasing Coulomb energy and diminishes with increasing isospin ([Formula: see text]) values exhibiting the fact that the coulomb forces are the main driving force in the central depletion in superheavy systems.


2008 ◽  
Vol 17 (07) ◽  
pp. 1309-1317
Author(s):  
FANG ZHOU ◽  
JIAN-YOU GUO

The superheavy nucleus 294118 and its α-decay chain have been investigated systematically in the relativistic mean-field (RMF) theory with the interactions NL3, TMA, PK1 and NLZ. The properties of ground state have been described well with the binding energies per nucleon and α-decay energies, which are reproduced as compared with the experimental data. It shows that the RMF theory is effective for studying not only the stable nuclei but also the superheavy nuclei presented here. In particular, the prolate shape predicted in the ground state of these superheavy nuclei is in agreement with the experimental data as well as other theoretical calculations.


2012 ◽  
Vol 27 (30) ◽  
pp. 1250173 ◽  
Author(s):  
M. BHUYAN ◽  
S. K. PATRA

An extensive theoretical search for the proton magic number in the superheavy valley beyond Z = 82 and the corresponding neutron magic number after N = 126 is carried out. For this we scanned a wide range of elements Z = 112–130 and their isotopes. The well-established non-relativistic Skryme–Hartree–Fock and Relativistic Mean Field formalisms with various force parameters are used. Based on the calculated systematics of pairing gap, two-neutron separation energy and the shell correction energy for these nuclei, we find Z = 120 as the next proton magic and N = 172, 182/184, 208 and 258 the subsequent neutron magic numbers.


2012 ◽  
Vol 21 (09) ◽  
pp. 1250076 ◽  
Author(s):  
D. SINGH ◽  
G. SAXENA

Inspired by recent experimental studies of two-proton radioactivity in the light-medium mass region, we have employed relativistic mean-field plus state-dependent BCS approach (RMF+BCS) to study the ground state properties of selected even-Z nuclei in the region 20 ≤ Z ≤ 40. It is found that the effective potential barrier provided by the Coulomb interaction and that due to centrifugal force may cause a long delay in the decay of some of the nuclei even with small negative proton separation energy. This may cause the existence of proton-rich nuclei beyond the proton drip-line. Nuclei 38 Ti , 42 Cr , 45 Fe , 48 Ni , 55 Zn , 60 Ge , 63, 64 Se , 68 Kr , 72 Sr and 76 Zr are found to be the potential candidates for exhibiting two-proton radioactivity in the region 20 ≤ Z ≤ 40. The reliability of these predictions is further strengthened by the agreement of the calculated results for the ground state properties such as binding energy, one- and two-proton separation energy, proton and neutron radii, and deformation with the available experimental data for the entire chain of the isotopes of the nuclei in the region 20 ≤ Z ≤ 40.


2004 ◽  
Vol 13 (03) ◽  
pp. 647-696 ◽  
Author(s):  
H. L. YADAV ◽  
M. KAUSHIK ◽  
H. TOKI

Recently, it has been demonstrated, considering Ni and Ca isotopes as prototypes, that the relativistic mean-field plus BCS (RMF+BCS) approach wherein the single particle continuum corresponding to the RMF is replaced by a set of discrete positive energy states for the calculation of pairing energy provides a good approximation to the full relativistic Hartree–Bogoliubov (RHB) description of the ground state properties of drip-line neutron rich nuclei. The applicability of the RMF+BCS approach even for the drip-line nuclei is essentially due to the fact that the main contribution to the pairing correlations for the neutron rich nuclei is provided by the low-lying resonant states, in addition to the contributions coming from the states close to the Fermi surface. In order to show the general validity of this approach we present the results of our detailed calculations for the ground state properties of the chains of isotopes of O, Ca, Ni, Zr, Sn and Pb nuclei. The TMA force parameter set has been used for the effective mean-field Lagrangian with nonlinear terms for the sigma and omega mesons. Further, to check the validity of our treatment for different mean-field descriptions, calculations have also been carried out for the NL-SH force parametrization usually employed for the description of drip-line nuclei. Comprehensive results for the two neutron separation energy, rms radii, single particle pairing gaps and pairing energies etc. are presented. In particular, the Ca isotopes are found to exhibit distinct features near the neutron drip line whereby it is found that further addition of neutrons causes a rapid increase in the neutron rms radius with almost no increase in the binding energy, indicating the occurrence of halos. This is mainly caused by the pairing correlations and results in the existence of bound states of extremely neutron rich exotic nuclei. Similar characteristics, though less pronounced, are also exhibited by neutron rich Zr isotopes. A comparison of these results with the available experimental data and with the recent continuum relativistic Hartree–Bogoliubov (RCHB) calculations amply demonstrates the validity and usefulness of this fast RMF+BCS approach for the description of nuclei including those near the drip-lines.


2013 ◽  
Vol 28 (16) ◽  
pp. 1350068 ◽  
Author(s):  
TUNCAY BAYRAM ◽  
A. HAKAN YILMAZ

The ground state energies, sizes and deformations of 1897 even–even nuclei with 10≤Z ≤110 have been carried out by using the Relativistic Mean Field (RMF) model. In the present calculations, the nonlinear RMF force NL3* recent refitted version of the NL3 force has been used. The BCS (Bardeen–Cooper–Schrieffer) formalism with constant gap approximation has been taken into account for pairing correlations. The predictions of RMF model for the ground state properties of some nuclei have been discussed in detail.


1997 ◽  
Vol 14 (4) ◽  
pp. 259-262 ◽  
Author(s):  
Ren Zhong-zhou ◽  
Zhu Zhi-yuan ◽  
Cai Yan-huang ◽  
Shen Yao-song ◽  
Zhan Wen-long ◽  
...  

2005 ◽  
Vol 14 (03) ◽  
pp. 505-511 ◽  
Author(s):  
B. NERLO-POMORSKA ◽  
K. POMORSKI ◽  
J. SYKUT ◽  
J. BARTEL

Self-consistent relativistic mean-field (RMF) calculations with the NL3 parameter set were performed for 171 spherical even-even nuclei with 16≤A≤224 at temperatures in the range 0≤T≤4 MeV . For this sample of nuclei single-particle level densities are determined by analyzing the data obtained for various temperatures. A new shell-correction method is used to evaluate shell effects at all temperatures. The single-particle level density is expressed as function of mass number A and relative isospin I and compared with previous estimates.


2000 ◽  
Vol 09 (06) ◽  
pp. 507-520
Author(s):  
S. V. S. SASTRY ◽  
ARUN K. JAIN ◽  
Y. K. GAMBHIR

In the relativistic mean field (RMF) calculations usually the basis expansion method is employed. For this one uses single harmonic oscillator (HO) basis functions. A proper description of the ground state nuclear properties of spherical nuclei requires a large (around 20) number of major oscillator shells in the expansion. In halo nuclei where the nucleons have extended spatial distributions, the use of single HO basis for the expansion is inadequate for the correct description of the nuclear properties, especially that of the surface region. In order to rectify these inadequacies, in the present work an orthonormal basis composed of two HO basis functions having different sizes is proposed. It has been shown that for a typical case of (A=11) the ground state constructed using two-HO wave functions extends much beyond the second state or even third excited state of the single HO wave function. To demonstrate its usefulness explicit numerical RMF calculations have been carried out using this procedure for a set of representative spherical nuclei ranging from 16 O to 208 Pb . The binding energies, charge radii and density distributions have been correctly reproduced in the present scheme using a much smaller number of major shells (around 10) in the expansion.


2013 ◽  
Vol 22 (04) ◽  
pp. 1350018 ◽  
Author(s):  
S. K. SINGH ◽  
S. MAHAPATRO ◽  
R. N. MISHRA

We study the extremely neutron-rich nuclei for Z = 17–23, 37–40 and 60–64 regions of the periodic table by using axially deformed relativistic mean field formalism with NL3* parametrization. Based on the analysis of binding energy, two neutron separation energy, quadrupole deformation and root mean square radii, we emphasized the speciality of these considered regions which are recently predicted islands of inversion.


Sign in / Sign up

Export Citation Format

Share Document