MODELING THE EFFECTS OF SCHISTOSOMIASIS ON THE TRANSMISSION DYNAMICS OF HIV/AIDS

2010 ◽  
Vol 18 (02) ◽  
pp. 277-297 ◽  
Author(s):  
C. P. BHUNU ◽  
J. M. TCHUENCHE ◽  
W. GARIRA ◽  
G. MAGOMBEDZE ◽  
S. MUSHAYABASA

A schistosomiasis and HIV/AIDS co-infection model is presented as a system of nonlinear ordinary differential equations. Qualitative analysis (properties) of the model are presented. The disease-free equilibrium is shown to be locally asymptotically stable when the associated epidemic threshold known as the basic reproduction number for the model is less than unity. The Centre Manifold theory is used to show that the schistosomiasis only and HIV/AIDS only endemic equilibria are locally asymptotically stable when the associated reproduction numbers are greater than unity. The model is numerically analyzed to assess the effects of schistosomiasis on the dynamics of HIV/AIDS. Analysis of the reproduction numbers and numerical simulations show that an increase of schistosomiasis cases result in an increase of HIV/AIDS cases, suggesting that schistosomiasis control have a positive impact in controlling the transmission dynamics of HIV/AIDS.

2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
S. Mushayabasa ◽  
C. P. Bhunu

We formulate a mathematical model for the cointeraction of schistosomiasis and HIV/AIDS in order to assess their synergistic relationship in the presence of therapeutic measures. Comprehensive mathematical techniques are used to analyze the model steady states. The disease-free equilibrium is shown to be locally asymptotically stable when the associated disease threshold parameter known as the basic reproduction number for the model is less than unity. Centre manifold theory is used to show that the schistosomiasis-only and HIV/AIDS-only endemic equilibria are locally asymptotically stable when the associated reproduction numbers are greater than unity. The impact of schistosomiasis and its treatment on the dynamics of HIV/AIDS is also investigated. To illustrate the analytical results, numerical simulations using a set of reasonable parameter values are provided, and the results suggest that schistosomiasis treatment will always have a positive impact on the control of HIV/AIDS.


2012 ◽  
Vol 05 (04) ◽  
pp. 1250029 ◽  
Author(s):  
S. MUSHAYABASA ◽  
C. P. BHUNU

A deterministic model for evaluating the impact of voluntary testing and treatment on the transmission dynamics of tuberculosis is formulated and analyzed. The epidemiological threshold, known as the reproduction number is derived and qualitatively used to investigate the existence and stability of the associated equilibrium of the model system. The disease-free equilibrium is shown to be locally-asymptotically stable when the reproductive number is less than unity, and unstable if this threshold parameter exceeds unity. It is shown, using the Centre Manifold theory, that the model undergoes the phenomenon of backward bifurcation where the stable disease-free equilibrium co-exists with a stable endemic equilibrium when the associated reproduction number is less than unity. The analysis of the reproduction number suggests that voluntary tuberculosis testing and treatment may lead to effective control of tuberculosis. Furthermore, numerical simulations support the fact that an increase voluntary tuberculosis testing and treatment have a positive impact in controlling the spread of tuberculosis in the community.


2004 ◽  
Vol 12 (04) ◽  
pp. 399-417 ◽  
Author(s):  
M. KGOSIMORE ◽  
E. M. LUNGU

This study investigates the effects of vaccination and treatment on the spread of HIV/AIDS. The objectives are (i) to derive conditions for the success of vaccination and treatment programs and (ii) to derive threshold conditions for the existence and stability of equilibria in terms of the effective reproduction number R. It is found, firstly, that the success of a vaccination and treatment program is achieved when R0t<R0, R0t<R0v and γeRVT(σ)<RUT(α), where R0t and R0v are respectively the reproduction numbers for populations consisting entirely of treated and vaccinated individuals, R0 is the basic reproduction number in the absence of any intervention, RUT(α) and RVT(σ) are respectively the reproduction numbers in the presence of a treatment (α) and a combination of vaccination and treatment (σ) strategies. Secondly, that if R<1, there exists a unique disease free equilibrium point which is locally asymptotically stable, while if R>1 there exists a unique locally asymptotically stable endemic equilibrium point, and that the two equilibrium points coalesce at R=1. Lastly, it is concluded heuristically that the stable disease free equilibrium point exists when the conditions R0t<R0, R0t<R0v and γeRVT(σ)<RUT(α) are satisfied.


2014 ◽  
Vol 07 (05) ◽  
pp. 1450054 ◽  
Author(s):  
S. Athithan ◽  
Mini Ghosh

This paper presents a nonlinear sex-structured mathematical model to study the spread of HIV/AIDS by considering transmission of disease by heterosexual contact. The epidemic threshold and equilibria for the model are determined, local stability and global stability of both the "Disease-Free Equilibrium" (DFE) and "Endemic Equilibrium" (EE) are discussed in detail. The DFE is shown to be locally and globally stable when the basic reproductive number ℛ0 is less than unity. We also prove that the EE is locally and globally asymptotically stable under some conditions. Finally, numerical simulations are reported to support the analytical findings.


2011 ◽  
Vol 19 (04) ◽  
pp. 683-723 ◽  
Author(s):  
D. P. MOUALEU ◽  
J. MBANG ◽  
R. NDOUNDAM ◽  
S. BOWONG

Infection with the hepatitis C virus (HCV) is the most common coinfection in people with the human immunodeficiency virus (HIV), and hepatitis C is categorized as an HIV-related illness. The study of the joint dynamics of HIV and HCV present formidable mathematical challenges in spite the fact that they share similar routes of transmission. A deterministic model for the co-interaction of HCV and HIV in a community is presented and rigorously analyzed. The disease-free equilibrium is shown to be locally asymptotically stable when the associated epidemic threshold known as the basic reproduction number for the model is less than the unity. The Centre Manifold theory is used to show that the HCV only and HIV/AIDS only endemic equilibria are locally asymptotically stable when their associated reproduction numbers are greater than the unity. We compute two coexistence thresholds for the stability of boundary equilibria. Numerical results are presented to validate analytical results.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Shewafera Wondimagegnhu Teklu ◽  
Temesgen Tibebu Mekonnen

In the paper, we have considered a nonlinear compartmental mathematical model that assesses the effect of treatment on the dynamics of HIV/AIDS and pneumonia coinfection in a human population at different infection stages. Our model revealed that the disease-free equilibrium points of the HIV/AIDS and pneumonia submodels are both locally and globally asymptotically stable whenever the associated basic reproduction numbers ( R H and R P ) are less than unity. Both the submodel endemic equilibrium points are locally and globally asymptotically stable whenever the associated basic reproduction numbers ( R P and R H ) are greater than unity. The full HIV/AIDS-pneumonia coinfection model has both locally and globally asymptotically stable disease-free equilibrium points whenever the basic reproduction number of the coinfection model R H P is less than unity. Using standard values of parameters collected from different kinds of literature, we found that the numerical values of the basic reproduction numbers of the HIV/AIDS-only submodel and pneumonia-only submodel are 17 and 7, respectively, and the basic reproduction number of the HIV/AIDS-pneumonia coinfection model is max 7 , 17 = 17 . Applying sensitive analysis, we identified the most influential parameters to change the behavior of the solution of the considered coinfection dynamical system are the HIV/AIDS and pneumonia transmission rates β 1 and β 2 , respectively. The coinfection model was numerically simulated to investigate the stability of the coinfection endemic equilibrium point, the impacts of transmission rates, and treatment strategies for HIV/AIDS-only, pneumonia-only, and HIV/AIDS-pneumonia coinfected individuals. Finally, we observed that numerical simulations indicate that treatment against infection at every stage lowers the rate of infection or disease prevalence.


Author(s):  
Kehinde Adekunle Bashiru

A Mathematical Model of HIV/AIDS with Heterosexual transmission in the presence of treatment was examine in this paper, it ascertained the impact of treated individuals on the transmission dynamics of HIV/AIDS. Equilibrium points of the model system were found, stability analysis and numerical simulation were carried out, it was discovered that HIV/AIDS can die out with test of time as Ro < 1 . It was observed that the model had a disease free equilibrium which was asymptotically stable for Ro < 1 and unstable for Ro > 1. Graphical representations of the numerical analysis showing the effect of treatment on the model were also presented.


2022 ◽  
Vol 2022 ◽  
pp. 1-20
Author(s):  
Shewafera Wondimagegnhu Teklu ◽  
Koya Purnachandra Rao

In this paper, we proposed and analyzed a realistic compartmental mathematical model on the spread and control of HIV/AIDS-pneumonia coepidemic incorporating pneumonia vaccination and treatment for both infections at each infection stage in a population. The model exhibits six equilibriums: HIV/AIDS only disease-free, pneumonia only disease-free, HIV/AIDS-pneumonia coepidemic disease-free, HIV/AIDS only endemic, pneumonia only endemic, and HIV/AIDS-pneumonia coepidemic endemic equilibriums. The HIV/AIDS only submodel has a globally asymptotically stable disease-free equilibrium if R 1 < 1 . Using center manifold theory, we have verified that both the pneumonia only submodel and the HIV/AIDS-pneumonia coepidemic model undergo backward bifurcations whenever R 2 < 1   and R 3 = max R 1 , R 2 < 1 , respectively. Thus, for pneumonia infection and HIV/AIDS-pneumonia coinfection, the requirement of the basic reproduction numbers to be less than one, even though necessary, may not be sufficient to completely eliminate the disease. Our sensitivity analysis results demonstrate that the pneumonia disease transmission rate   β 2 and the HIV/AIDS transmission rate   β 1 play an important role to change the qualitative dynamics of HIV/AIDS and pneumonia coinfection. The pneumonia infection transmission rate β 2 gives rises to the possibility of backward bifurcation for HIV/AIDS and pneumonia coinfection if R 3 = max R 1 , R 2 < 1 , and hence, the existence of multiple endemic equilibria some of which are stable and others are unstable. Using standard data from different literatures, our results show that the complete HIV/AIDS and pneumonia coinfection model reproduction number is R 3 = max R 1 , R 2 = max 1.386 , 9.69   = 9.69   at β 1 = 2 and β 2 = 0.2   which shows that the disease spreads throughout the community. Finally, our numerical simulations show that pneumonia vaccination and treatment against disease have the effect of decreasing pneumonia and coepidemic disease expansion and reducing the progression rate of HIV infection to the AIDS stage.


2020 ◽  
Vol 15 ◽  
pp. 65
Author(s):  
Salisu M. Garba ◽  
Usman A. Danbaba

In this study, a non-autonomous (temperature dependent) and autonomous (temperature independent) models for the transmission dynamics of malaria in a population are designed and rigorously analysed. The models are used to assess the impact of temperature changes on various control strategies. The autonomous model is shown to exhibit the phenomenon of backward bifurcation, where an asymptotically-stable disease-free equilibrium (DFE) co-exists with an asymptotically-stable endemic equilibrium when the associated reproduction number is less than unity. This phenomenon is shown to arise due to the presence of imperfect vaccines and disease-induced mortality rate. Threshold quantities (such as the basic offspring number, vaccination and host type reproduction numbers) and their interpretations for the models are presented. Conditions for local asymptotic stability of the disease-free solutions are computed. Sensitivity analysis using temperature data obtained from Kwazulu Natal Province of South Africa [K. Okuneye and A.B. Gumel. Mathematical Biosciences 287 (2017) 72–92] is used to assess the parameters that have the most influence on malaria transmission. The effect of various control strategies (bed nets, adulticides and vaccination) were assessed via numerical simulations.


2020 ◽  
Vol 24 (5) ◽  
pp. 917-922
Author(s):  
J. Andrawus ◽  
F.Y. Eguda ◽  
I.G. Usman ◽  
S.I. Maiwa ◽  
I.M. Dibal ◽  
...  

This paper presents a new mathematical model of a tuberculosis transmission dynamics incorporating first and second line treatment. We calculated a control reproduction number which plays a vital role in biomathematics. The model consists of two equilibrium points namely disease free equilibrium and endemic equilibrium point, it has been shown that the disease free equilibrium point was locally asymptotically stable if thecontrol reproduction number is less than one and also the endemic equilibrium point was locally asymptotically stable if the control reproduction number is greater than one. Numerical simulation was carried out which supported the analytical results. Keywords: Mathematical Model, Biomathematics, Reproduction Number, Disease Free Equilibrium, Endemic Equilibrium Point


Sign in / Sign up

Export Citation Format

Share Document