NUMERICAL AND EXPERIMENTAL TIME-REVERSAL OF ACOUSTIC WAVES IN RANDOM MEDIA

2001 ◽  
Vol 09 (03) ◽  
pp. 993-1003 ◽  
Author(s):  
ARNAUD DERODE ◽  
MICKAËL TANTER ◽  
ARNAUD TOURIN ◽  
LAURENT SANDRIN ◽  
MATHIAS FINK

In classical mechanics, a time-reversal experiment with a large number of particles is impossible. Because of the high sensitivity to initial conditions, one would need to resolve the positions and velocities of each particle with infinite accuracy. Thus, it would require an infinite amount of information, which is of course out of reach. In wave physics however, the amount of information required to describe a wave field is limited and depends on the shortest wavelength of the field. Thus we can propose an acoustic equivalent of the experiment we mentioned above. We start with a coherent transient pulse, let it propagate through a disordered highly scattering medium, then record the scattered field and time-reverse it: surprisingly, it travels back to its initial source, which is not predictable by usual theories for random media. Indeed, to study waves propagation in disordered media theoreticians, who find it difficult to deal with one realization of disorder, use concepts defined as an average over the realizations, which naturally leads to the diffusion approximation. But the corresponding equation is not time-reversal invariant and thus fails in describing our experiment. Then, to understand our experimental results and try to predict new ones, we have developed a finite elements simulation based on the real microscopic time-invariant equation of propagation. The experimental and numerical results are found to be in very good agreement.

1999 ◽  
Vol 105 (2) ◽  
pp. 956-956
Author(s):  
Arnaud Tourin ◽  
Arnaud Derode ◽  
Mathias Fink

Author(s):  
Nicolas Gisin

Abstract It is usual to identify initial conditions of classical dynamical systems with mathematical real numbers. However, almost all real numbers contain an infinite amount of information. I argue that a finite volume of space can’t contain more than a finite amount of information, hence that the mathematical real numbers are not physically relevant. Moreover, a better terminology for the so-called real numbers is “random numbers”, as their series of bits are truly random. I propose an alternative classical mechanics, which is empirically equivalent to classical mechanics, but uses only finite-information numbers. This alternative classical mechanics is non-deterministic, despite the use of deterministic equations, in a way similar to quantum theory. Interestingly, both alternative classical mechanics and quantum theories can be supplemented by additional variables in such a way that the supplemented theory is deterministic. Most physicists straightforwardly supplement classical theory with real numbers to which they attribute physical existence, while most physicists reject Bohmian mechanics as supplemented quantum theory, arguing that Bohmian positions have no physical reality.


2021 ◽  
Vol 15 (4) ◽  
pp. 118-131
Author(s):  
Sadiq A. Mehdi

In this paper, a novel four-dimensional chaotic system has been created, which has characteristics such as high sensitivity to the initial conditions and parameters. It also has two a positive Lyapunov exponents. This means the system is hyper chaotic. In addition, a new algorithm was suggested based on which they constructed an image cryptosystem. In the permutation stage, the pixel positions are scrambled via a chaotic sequence sorting. In the substitution stage, pixel values are mixed with a pseudorandom sequence generated from the 4D chaotic system using XOR operation. A simulation has been conducted to evaluate the algorithm, using the standardized tests such as information entropy, histogram, number of pixel change rate, unified average change intensity, and key space. Experimental results and performance analyses demonstrate that the proposed encryption algorithm achieves high security and efficiency.


2020 ◽  
Author(s):  
Yu Deng ◽  
Zhuo-Fei Fan ◽  
Shiyuan Zhao ◽  
Frédéric Grillot ◽  
Cheng Wang

Abstract Chaos in nonlinear dynamical systems is featured with irregular appearance and with high sensitivity to initial conditions. Near-infrared semiconductor lasers subject to optical feedback from an external reflector are popular chaotic light sources, which have enabled multiple applications. Here, we report the fully-developed chaos in a mid-infrared interband cascade laser with external optical feedback. The chaos leads to significant electrical power enhancement over a frequency span of 500 MHz. In addition, the laser also exhibits periodic oscillations or low-frequency fluctuations before producing chaos, depending on the operation conditions. This work paves the way for extending chaos investigations from the near-infrared regime to the mid-infrared regime, which can stimulate potential applications in this spectral range.


2019 ◽  
Vol 57 (1-2) ◽  
pp. 223-244 ◽  
Author(s):  
Alessandro Abate ◽  
Iury Bessa ◽  
Lucas Cordeiro ◽  
Cristina David ◽  
Pascal Kesseli ◽  
...  

Abstract We present a sound and automated approach to synthesizing safe, digital controllers for physical plants represented as time-invariant models. Models are linear differential equations with inputs, evolving over a continuous state space. The synthesis precisely accounts for the effects of finite-precision arithmetic introduced by the controller. The approach uses counterexample-guided inductive synthesis: an inductive generalization phase produces a controller that is known to stabilize the model but that may not be safe for all initial conditions of the model. Safety is then verified via bounded model checking: if the verification step fails, a counterexample is provided to the inductive generalization, and the process further iterates until a safe controller is obtained. We demonstrate the practical value of this approach by automatically synthesizing safe controllers for physical plant models from the digital control literature.


1997 ◽  
Vol 37 (1) ◽  
pp. 7-12 ◽  
Author(s):  
M Kafesaki ◽  
E. N Economou
Keyword(s):  

2019 ◽  
Vol 286 ◽  
pp. 07008
Author(s):  
J. Benyza ◽  
M. Lamine ◽  
A. Hifdi

The effect of a uniform cross flow (injection/ suction) on the transient energy growth of a plane Poiseuille flow is investigated. Non-modal linear stability analysis is carried out to determine the two-dimensional optimal perturbations for maximum growth. The linearized Navier-Stockes equations are reduced to a modified Orr Sommerfeld equation that is solved numerically using a Chebychev collocation spectral method. Our study is focused on the response to external excitations and initial conditions by examining the energy growth function G(t) and the pseudo-spectrum. Results show that, the transient energy of the optimal perturbation grows rapidly at short times and decline slowly at long times when the cross-flow rate is low or strong. In addition, the maximum energy growth is very pronounced in low injection rate than that of the strong one. For the intermediate cross-flow rate, the transient energy growth of the perturbation, is only possible at the long times with a very high-energy gain. Analysis of the pseudo-spectrum show that the non-normal character of the modified Orr-Sommerfeld operator tends to a high sensitivity of pseudo-spectra structures.


Sign in / Sign up

Export Citation Format

Share Document