2.5D AND 3D GREEN'S FUNCTIONS FOR ACOUSTIC WEDGES: IMAGE SOURCE TECHNIQUE VERSUS A NORMAL MODE APPROACH

2013 ◽  
Vol 21 (01) ◽  
pp. 1250025 ◽  
Author(s):  
A. TADEU ◽  
E. G. A. COSTA ◽  
J. ANTÓNIO ◽  
P. AMADO-MENDES

2.5D and 3D Green's functions are implemented to simulate wave propagation in the vicinity of two-dimensional wedges. All Green's functions are defined by the image-source technique, which does not account directly for the acoustic penetration of the wedge surfaces. The performance of these Green's functions is compared with solutions based on a normal mode model, which are found not to converge easily for receivers whose distance to the apex is similar to the distance from the source to the apex. The applicability of the image source Green's functions is then demonstrated by means of computational examples for three-dimensional wave propagation. For this purpose, a boundary element formulation in the frequency domain is developed to simulate the wave field produced by a 3D point pressure source inside a two-dimensional fluid channel. The propagating domain may couple different dipping wedges and flat horizontal layers. The full discretization of the boundary surfaces of the channel is avoided since 2.5D Green's functions are used. The BEM is used to couple the different subdomains, discretizing only the vertical interfaces between them.

Geophysics ◽  
1975 ◽  
Vol 40 (2) ◽  
pp. 309-324 ◽  
Author(s):  
Gerald W. Hohmann

The induced polarization (IP) and electromagnetic (EM) responses of a three‐dimensional body in the earth can be calculated using an integral equation solution. The problem is formulated by replacing the body by a volume of polarization or scattering current. The integral equation is reduced to a matrix equation, which is solved numerically for the electric field in the body. Then the electric and magnetic fields outside the inhomogeneity can be found by integrating the appropriate dyadic Green’s functions over the scattering current. Because half‐space Green’s functions are used, it is only necessary to solve for scattering currents in the body—not throughout the earth. Numerical results for a number of practical cases show, for example, that for moderate conductivity contrasts the dipole‐dipole IP response of a body five units in strike length approximates that of a two‐dimensional body. Moving an IP line off the center of a body produces an effect similar to that of increasing the depth. IP response varies significantly with conductivity contrast; the peak response occurs at higher contrasts for two‐dimensional bodies than for bodies of limited length. Very conductive bodies can produce negative IP response due to EM induction. An electrically polarizable body produces a small magnetic field, so that it is possible to measure IP with a sensitive magnetometer. Calculations show that horizontal loop EM response is enhanced when the background resistivity in the earth is reduced, thus confirming scale model results.


2008 ◽  
Vol 86 (4) ◽  
pp. 601-610
Author(s):  
R Dick

We discuss three formalisms for the description of Fermions in low-dimensional systems. Then we consider dimensionally hybrid Hamiltonians with mixed three-dimensional and two-dimensional kinetic terms. These Hamiltonians yield particular dimensionally hybrid Green’s functions with interesting prospects for the description of the transition between two-dimensional and three-dimensional behavior of particles in the presence of attractive interface potentials.PACS Nos.: 05.30.Fk, 71.10.Pm, 73.20.–r


2017 ◽  
Vol 74 (11) ◽  
pp. 3551-3566 ◽  
Author(s):  
Jacob P. Edman ◽  
David M. Romps

Abstract The baroclinic-mode decomposition is a fixture of the tropical-dynamics literature because of its simplicity and apparent usefulness in understanding a wide range of atmospheric phenomena. However, its derivation relies on the assumption that the tropopause is a rigid lid that artificially restricts the vertical propagation of wave energy. This causes tropospheric buoyancy anomalies of a single vertical mode to remain coherent for all time in the absence of dissipation. Here, the authors derive the Green’s functions for these baroclinic modes in a two-dimensional troposphere (or, equivalently, a three-dimensional troposphere with one translational symmetry) that is overlain by a stratosphere. These Green’s functions quantify the propagation and spreading of gravity waves generated by a horizontally localized heating, and they can be used to reconstruct the evolution of any tropospheric heating. For a first-baroclinic two-dimensional right-moving or left-moving gravity wave with a characteristic width of 100 km, its initial horizontal shape becomes unrecognizable after 4 h, at which point its initial amplitude has also been reduced by a factor of 1/π. After this time, the gravity wave assumes a universal shape that widens linearly in time. For gravity waves on a periodic domain the length of Earth’s circumference, it takes only 10 days for the gravity waves to spread their buoyancy throughout the entire domain.


Author(s):  
Yang Gao ◽  
Andreas Ricoeur

Owing to their specific structure, which can neither be classified as crystalline nor amorphous, quasi-crystals (QCs) exhibit properties that are interesting to both material science and mathematical physics or continuum mechanics. Within the framework of a mathematical theory of elasticity, one major focus is on features evolving from the coupling of phonon and phason fields, which is not observed in classical crystalline or amorphous materials. This paper deals with the problems of combinations of point phonon forces and point phason forces, which are applied to the interior of infinite solids and bimaterial solids of two-dimensional hexagonal QCs. By using the general solution of QCs, a series of displacement functions is adopted to obtain the analytical results when the two half-spaces are supposed to be ideally bonded or to be in smooth contact. In the final expressions, we provide three-dimensional Green’s functions for infinite bimaterial QC solids in the closed form, which are very convenient to be used in the study of dislocations, cracks and inhomogeneities of the new solid phase. Furthermore, the paper is concluded by a discussion of some special cases, in which Green’s functions for infinite transversely isotropic solids and Green’s functions for a half-space with free or fixed boundary are given.


1995 ◽  
Author(s):  
Andrzej J. Hanyga ◽  
Philippe Thierry ◽  
Gilles Lambare ◽  
Paulo S. Lucio

Author(s):  
Guilherme Ramalho Costa ◽  
José Aguiar santos junior ◽  
José Ricardo Ferreira Oliveira ◽  
Jefferson Gomes do Nascimento ◽  
Gilmar Guimaraes

2003 ◽  
Vol 70 (2) ◽  
pp. 180-190 ◽  
Author(s):  
E. Pan

In this paper, three-dimensional Green’s functions in anisotropic elastic bimaterials with imperfect interface conditions are derived based on the extended Stroh formalism and the Mindlin’s superposition method. Four different interface models are considered: perfect-bond, smooth-bond, dislocation-like, and force-like. While the first one is for a perfect interface, other three models are for imperfect ones. By introducing certain modified eigenmatrices, it is shown that the bimaterial Green’s functions for the three imperfect interface conditions have mathematically similar concise expressions as those for the perfect-bond interface. That is, the physical-domain bimaterial Green’s functions can be obtained as a sum of a homogeneous full-space Green’s function in an explicit form and a complementary part in terms of simple line-integrals over [0,π] suitable for standard numerical integration. Furthermore, the corresponding two-dimensional bimaterial Green’s functions have been also derived analytically for the three imperfect interface conditions. Based on the bimaterial Green’s functions, the effects of different interface conditions on the displacement and stress fields are discussed. It is shown that only the complementary part of the solution contributes to the difference of the displacement and stress fields due to different interface conditions. Numerical examples are given for the Green’s functions in the bimaterials made of two anisotropic half-spaces. It is observed that different interface conditions can produce substantially different results for some Green’s stress components in the vicinity of the interface, which should be of great interest to the design of interface. Finally, we remark that these bimaterial Green’s functions can be implemented into the boundary integral formulation for the analysis of layered structures where imperfect bond may exist.


Sign in / Sign up

Export Citation Format

Share Document