HOLOGRAM RECORDING AND ERASURE IN GaAs:Cr WITH SIMULTANEOUSLY APPLIED ELECTRIC AND MAGNETIC FIELDS

2012 ◽  
Vol 21 (04) ◽  
pp. 1250053 ◽  
Author(s):  
DHEERAJ SHARMA ◽  
UMESH GUPTA ◽  
DEVENDRA MOHAN

Externally applied fields play crucial role in the enhancement of space charge electric field (Esc) in photorefractive (PR) materials. Using band-charge transport model, Esc (~105V/m) is obtained in presence of externally applied dc electric (E0) and magnetic (B0) fields simultaneously. Numerical estimation of GaAs:Cr shows that in presence of externally applied fields (optimum value of E0 = 5 × 102 V/m and B0 = 640 gauss), diffraction efficiency ~90% can be observed. To further elaborate the above result, a typical behavior of recording and erasure of hologram with respect to time has been investigated. Result manifest that GaAs:Cr is efficient, ultrafast writing and erasing media for PR-grating.

JOUTICA ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 255
Author(s):  
Kemal Farouq Mauladi ◽  
Nurul Fuad

Telecommunications technology is developing very rapidly, ranging from users or engineers. The development of smartphone smartphones is also increasingly in demand, so that the use of electricity needs is also increasing. The need for electricity usage has resulted in more standing voltage in some settlements. The establishment of sutet will have a negative impact on public health. In addition, the influence of electrical energy on humans occurs because the electrical energy generated by electricity generation or electricity that is channeled gives rise to electromagnetic fields. The higher the voltage required by an equipment, the greater the electric field that is distributed. Besides that, it can also find ways to reduce the negative impact of the electric and magnetic fields produced by SUTET which impacts the process of the occurrence of electric and magnetic fields on SUTET. From the problems above, the author intends to determine the effect or correlation between the impact of SUTET on cellphone network transmissions or channels. This research can later determine the negative impact caused by SUTET for the surrounding community, and the impact of SUTET radiation on cellular networks.


2008 ◽  
Vol 74 (1) ◽  
pp. 111-118
Author(s):  
FEN-CE CHEN

AbstractThe acceleration of ions by multiple laser pulses and their spontaneously generated electric and magnetic fields is investigated by using an analytical model for the latter. The relativistic equations of motion of test charged particles are solved numerically. It is found that the self-generated axial electric field plays an important role in the acceleration, and the energy of heavy test ions can reach several gigaelectronvolts.


2021 ◽  
Author(s):  
Karthikeyan Rajagopal ◽  
Irene Moroz ◽  
Balamurali Ramakrishnan ◽  
Anitha Karthikeyan ◽  
Prakash Duraisamy

Abstract A Morris-Lecar neuron model is considered with Electric and Magnetic field effects where the electric field is a time varying sinusoid and magnetic field is simulated using an exponential flux memristor. We have shown that the exposure to electric and magnetic fields have significant effects on the neurons and have exhibited complex oscillations. The neurons exhibit a frequency-locked state for the periodic electric field and different ratios of frequency locked states with respect to the electric field frequency is also presented. To show the impact of the electric and magnetic fields on network of neurons, we have constructed different types of network and have shown the network wave propagation phenomenon. Interestingly the nodes exposed to both electric and magnetic fields exhibit more stable spiral waves compared to the nodes exhibited only to the magnetic fields. Also, when the number of layers are increased the range of electric field frequency for which the layers exhibit spiral waves also increase. Finally the noise effects on the field affected neuron network are discussed and multilayer networks supress spiral waves for a very low noise variance compared against the single layer network.


2012 ◽  
Vol 15 ◽  
pp. 184-190
Author(s):  
ABBAS SHAHBANDARI

The effect of phonon confinement on ground state binding energy of bound polaron in polar quantum wires with a finite confining potential investigated by Landau-Pekar variation technique. The effect of external electric and magnetic fields is taken into account as well. The obtained results show that the polar optical phonon confinement leads to a considerable enhancement of the polaron effect and these corrections increase with increasing of applied fields.


AIChE Journal ◽  
1990 ◽  
Vol 36 (7) ◽  
pp. 1061-1074 ◽  
Author(s):  
Angel G. Guzmán-Garcia ◽  
Peter N. Pintauro ◽  
Mark W. Verbrugge ◽  
Robert F. Hill

2018 ◽  
Vol 96 (9) ◽  
pp. 961-968
Author(s):  
De-hua Wang

We examine the dynamics of electrons photodetached from the H– ion in time-dependent electric and magnetic fields for the first time. The photodetachment microscopy patterns caused by a time-dependent gradient electric field and magnetic field have been analyzed in great detail based on the semiclassical theory. The interplay of the gradient electric field and magnetic field forces causes an intricate shape of the electron wave and multiple electron trajectories generated by a fixed energy point source can arrive at a given point on the microchannel-plate detector. The interference effects between these electron trajectories cause the oscillatory structures of the electron probability density and electron current distribution, and a set of concentric interference fringes are found at the detector. Our calculation results suggest that the photodetachment microscopy interference pattern on the detector can be adjusted by the electron energy, magnetic field strength, and position of the detector plane. Under certain conditions, the interference pattern in the electron current distribution might be seen on the detector plane localized at a macroscopic distance from the photodetachment source, which can be observed in an actual photodetachment microscopy experiment. Therefore, we make predictions that our work should serve as a guide for future photodetachment microscopy experiments in time-dependent electric and magnetic fields.


High Voltage ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 176-183 ◽  
Author(s):  
Hucheng Liang ◽  
Boxue Du ◽  
Jin Li ◽  
Hang Yao ◽  
Zehua Wang

Sign in / Sign up

Export Citation Format

Share Document