scholarly journals ANALISIS HUBUNGAN SALURAN TEGANGAN TINGGI LISTRIK TERHADAP JARINGAN SELULAR DI DAERAH GRAHA INDAH TAMBAKBOYO LAMONGAN

JOUTICA ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 255
Author(s):  
Kemal Farouq Mauladi ◽  
Nurul Fuad

Telecommunications technology is developing very rapidly, ranging from users or engineers. The development of smartphone smartphones is also increasingly in demand, so that the use of electricity needs is also increasing. The need for electricity usage has resulted in more standing voltage in some settlements. The establishment of sutet will have a negative impact on public health. In addition, the influence of electrical energy on humans occurs because the electrical energy generated by electricity generation or electricity that is channeled gives rise to electromagnetic fields. The higher the voltage required by an equipment, the greater the electric field that is distributed. Besides that, it can also find ways to reduce the negative impact of the electric and magnetic fields produced by SUTET which impacts the process of the occurrence of electric and magnetic fields on SUTET. From the problems above, the author intends to determine the effect or correlation between the impact of SUTET on cellphone network transmissions or channels. This research can later determine the negative impact caused by SUTET for the surrounding community, and the impact of SUTET radiation on cellular networks.

2008 ◽  
Vol 74 (1) ◽  
pp. 111-118
Author(s):  
FEN-CE CHEN

AbstractThe acceleration of ions by multiple laser pulses and their spontaneously generated electric and magnetic fields is investigated by using an analytical model for the latter. The relativistic equations of motion of test charged particles are solved numerically. It is found that the self-generated axial electric field plays an important role in the acceleration, and the energy of heavy test ions can reach several gigaelectronvolts.


2020 ◽  
Vol 25 (4) ◽  
pp. 290-307
Author(s):  
Y. Luo ◽  
◽  
L. F. Chernogor ◽  

Purpose: Acoustic and atmospheric gravity waves (AAGW) are generated by many natural and anthropogenic sources. The AAGW propagation at ionospheric heights is accompanied by the generation of disturbances in the magnetic and electric fields. The plasma presence plays a crucial role. The mechanisms for generating electrical and magnetic disturbances in the near-Earth atmosphere by the AAGW have been studied much worse. Therefore, the validation of the capability to generate electromagnetic disturbances in the near-Earth atmosphere by the AAGW is an urgent problem. The purpose of this paper is to describe the mechanism for generating disturbances in the electric and magnetic fields in the near-Earth atmosphere under the action of AAGW and to estimate the amplitudes of these disturbances for various AAGW sources. Design/methodology/approach: The impact of a series of highenergy sources often results in the generation of synchronous disturbances in the acoustic and geoelectric (atmospheric) fields, when an approximate proportionality between the pressure amplitude and the amplitude of the disturbances in the atmospheric electric field is observed to occur. Based on the observational data and making use of the Maxwell equations, the theoretical estimates of the disturbances in the electric and magnetic fields have been obtained. Findings: Simplified expressions have been obtained for estimating the amplitudes of the electric and magnetic fields under the action of the AAGW generated by natural and manmade sources. The amplitudes of the electric and magnetic fields generated by the AAGW of natural and manmade origin, which travel in the near-Earth atmosphere, have been calculated. The amplitudes of the AAGW generated electric and magnetic fields are shown to be large enough to be detected with the existing electrometers and fluxmeter magnetometers. The magnitudes of the amplitudes of the electric and magnetic fields generated in the near-Earth atmosphere under the action of AAGW are large enough to trigger coupling between the subsystems in the Earth–atmosphere–ionosphere–magnetosphere system. Conclusions: The estimates and not numerous observations are in good agreement. Key words: acoustic and atmospheric gravity waves, near-Earth atmosphere, volume charge, atmospheric pressure disturbances, electric field, magnetic field


2014 ◽  
Vol 80 (3) ◽  
pp. 865-892 ◽  
Author(s):  
Paul D Ledger ◽  
William R B Lionheart

Abstract We rigorously derive the leading-order terms in asymptotic expansions for the scattered electric and magnetic fields in the presence of a small object at distances that are large compared with its size. Our expansions hold for fixed wavenumber when the scatterer is a (lossy) homogeneous dielectric object with constant material parameters or a perfect conductor. We also derive the corresponding leading-order terms in expansions for the fields for a low-frequency problem when the scatterer is a non-lossy homogeneous dielectric object with constant material parameters or a perfect conductor. In each case, we express our results in terms of polarization tensors.


2021 ◽  
Author(s):  
Karthikeyan Rajagopal ◽  
Irene Moroz ◽  
Balamurali Ramakrishnan ◽  
Anitha Karthikeyan ◽  
Prakash Duraisamy

Abstract A Morris-Lecar neuron model is considered with Electric and Magnetic field effects where the electric field is a time varying sinusoid and magnetic field is simulated using an exponential flux memristor. We have shown that the exposure to electric and magnetic fields have significant effects on the neurons and have exhibited complex oscillations. The neurons exhibit a frequency-locked state for the periodic electric field and different ratios of frequency locked states with respect to the electric field frequency is also presented. To show the impact of the electric and magnetic fields on network of neurons, we have constructed different types of network and have shown the network wave propagation phenomenon. Interestingly the nodes exposed to both electric and magnetic fields exhibit more stable spiral waves compared to the nodes exhibited only to the magnetic fields. Also, when the number of layers are increased the range of electric field frequency for which the layers exhibit spiral waves also increase. Finally the noise effects on the field affected neuron network are discussed and multilayer networks supress spiral waves for a very low noise variance compared against the single layer network.


2018 ◽  
Vol 121 ◽  
pp. 21-30
Author(s):  
Kamil Białek ◽  
Jacek Paś

The article presents the results of research electric and magnetic fields in the field of higher frequencies, which are produced by electronic security systems in large logistics areas. The paper also presents the background of the electromagnetic environment. Distorted electromagnetic environment can interfere with the operation of electrical and electronic equipment that are used in the railway area. Particular attention has been paid to the impact of electromagnetic interference on selected electronic security systems.


10.12737/5019 ◽  
2014 ◽  
Vol 8 (1) ◽  
pp. 1-4
Author(s):  
Горохов ◽  
E. Gorokhov ◽  
Ляпкало ◽  
A. Lyapkalo

The paper presents the results of instrumental studies by means of hygienic assessment of levels of electromagnetic fields (EMF) on the workplaces in cellular companies. Measurements of EFM were made on workplaces of 2 groups of employees during the studies: office administrative specialists and technical employees. Instrumental measurements of EMF levels were made by Personal Electronic Computers (PCs) and receivingtransmitting equipment of base cellular stations (BCS). Measurements of EMF from the PC´s screens based on electric and magnetic components were performed: a tension of electric fields with a frequency range of 5Hz-2 kHz and 2 kHz-4 kHz; a tension of magnetic fields in the frequency range of 5Hz-2 kHz and 2 kHz-4 kHz. Measurements of flux density of electromagnetic energy were performed at operating platforms of base stations and at control operating equipment rooms of cellular stations. There were about 150 workplaces of office administrative specialists with PCs surveyed and more 500 workplaces of technical specialists. The activities of administrations of cellular companies were estimated to ensure the safety of working conditions of employees under the influence of electromagnetic radiation (EMR). Literature data on the impact of EMR on human health and health of employees were presented.


2018 ◽  
Vol 96 (9) ◽  
pp. 961-968
Author(s):  
De-hua Wang

We examine the dynamics of electrons photodetached from the H– ion in time-dependent electric and magnetic fields for the first time. The photodetachment microscopy patterns caused by a time-dependent gradient electric field and magnetic field have been analyzed in great detail based on the semiclassical theory. The interplay of the gradient electric field and magnetic field forces causes an intricate shape of the electron wave and multiple electron trajectories generated by a fixed energy point source can arrive at a given point on the microchannel-plate detector. The interference effects between these electron trajectories cause the oscillatory structures of the electron probability density and electron current distribution, and a set of concentric interference fringes are found at the detector. Our calculation results suggest that the photodetachment microscopy interference pattern on the detector can be adjusted by the electron energy, magnetic field strength, and position of the detector plane. Under certain conditions, the interference pattern in the electron current distribution might be seen on the detector plane localized at a macroscopic distance from the photodetachment source, which can be observed in an actual photodetachment microscopy experiment. Therefore, we make predictions that our work should serve as a guide for future photodetachment microscopy experiments in time-dependent electric and magnetic fields.


1975 ◽  
Vol 53 (6) ◽  
pp. 598-609 ◽  
Author(s):  
V. Ramaswamy ◽  
H. W. Dosso

Analytical solutions for the low frequency electromagnetic fields of a dipole source situated in the lower layer of a two layer conductor are derived. The sources considered are a vertical electric dipole, a horizontal electric dipole, and a horizontal magnetic dipole. The numerical results discussed in this paper describe the general behavior of the electric and magnetic fields for various upper layer conductivities, upper layer thickness, and source depths. The results are of interest in the application of electromagnetic techniques to locate miners trapped underground following a mine disaster.


Sign in / Sign up

Export Citation Format

Share Document