scholarly journals The Algebra of Assortative Encounters and the Evolution of Cooperation

2003 ◽  
Vol 05 (03) ◽  
pp. 211-228 ◽  
Author(s):  
Theodore C. Bergstrom

This paper explores the way in which assortative matching can maintain cooperative behavior under evolutionary dynamics. If encounters are random, then in Prisoner's Dilemma games, defectors necessarily get higher payoffs than cooperators and thus will eventually prevail. But if matching is assortative, the cost of cooperating may be repaid by higher probabilities of playing against a cooperating opponent. This paper shows that a simple index of assortativity allows a unifying treatment of the evolutionary dynamics in a wide variety of models of social encounters.

1995 ◽  
Vol 3 (3) ◽  
pp. 349-363 ◽  
Author(s):  
David B. Fogel

Evolutionary programming experiments are conducted to examine the relationship between the durations of encounters and the evolution of cooperative behavior in the iterated prisoner's dilemma. A population of behavioral strategies represented by finite-state machines is evolved over successive generations, with selection made on the basis of individual fitness. Each finite-state machine is given an additional evolvable parameter corresponding to the maximum number of moves it will execute in any encounter. A series of Monte Carlo trials indicates distinct relationships between encounter length and cooperation; however, no causal relationship can be positively identified.


2009 ◽  
Vol 17 (2) ◽  
pp. 257-274 ◽  
Author(s):  
Jiawei Li ◽  
Graham Kendall

In recent iterated prisoner's dilemma tournaments, the most successful strategies were those that had identification mechanisms. By playing a predetermined sequence of moves and learning from their opponents' responses, these strategies managed to identify their opponents. We believe that these identification mechanisms may be very useful in evolutionary games. In this paper one such strategy, which we call collective strategy, is analyzed. Collective strategies apply a simple but efficient identification mechanism (that just distinguishes themselves from other strategies), and this mechanism allows them to only cooperate with their group members and defect against any others. In this way, collective strategies are able to maintain a stable population in evolutionary iterated prisoner's dilemma. By means of an invasion barrier, this strategy is compared with other strategies in evolutionary dynamics in order to demonstrate its evolutionary features. We also find that this collective behavior assists the evolution of cooperation in specific evolutionary environments.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Chao Liu ◽  
Rong Li

The effect of the random drift on the evolutionary prisoner’s dilemma game is studied on regular lattices. A new evolutionary rule is proposed, which stochastically combines the deterministic rule with the random drift rule. It is found that the random drift has an effect on the evolutionary dynamics depending on the values of the temptation-to-defectband the probabilitypof the random drift. When the random drift occurs with low probabilities, which interests us more, a phenomenon of the Matthew effect on the evolution of cooperation is found. Explanations of this phenomenon are deduced through the analysis on the dynamics and pattern formations of the PDG system.


2008 ◽  
Vol 10 (04) ◽  
pp. 539-564 ◽  
Author(s):  
JOHN F. NASH

The idea leading to this study originated some time ago when I talked at a gathering of high school graduates at a summer science camp. I spoke about the theme of "the evolution of cooperation" (in Nature) and about how that topic was amenable to studies involving Game Theory (which, more frequently, has been used in research in economics). After that event I was stimulated to think of the possibility of modeling cooperation in games through actions of acceptance in which one player could simply accept the "agency" of another player or of an existing coalition of players. The action of acceptance would have the form of being entirely cooperative, as if "altruistic", and not at all competitive, but there was also the idea that the game would be studied under circumstances of repetition and that every player would have the possibility of reacting in a non-cooperative fashion to any undesirable pattern of behavior of any another player. Thus the game studied would be analogous to the repeated games of "Prisoner's Dilemma" variety that have been studied in theoretical biology. These studies of "PD" (or "Prisoner's Dilemma") games have revealed the paradoxical possibility of the natural evolution of cooperative behavior when the interacting organisms or species are presumed only to be endowed with self-interested motivations, thus motivations of a non-cooperative type.


2020 ◽  
Author(s):  
M Testori ◽  
M Kempf ◽  
RB Hoyle ◽  
Hedwig Eisenbarth

© 2019 Hogrefe Publishing. Personality traits have been long recognized to have a strong impact on human decision-making. In this study, a sample of 314 participants took part in an online game to investigate the impact of psychopathic traits on cooperative behavior in an iterated Prisoner's dilemma game. We found that disinhibition decreased the maintenance of cooperation in successive plays, but had no effect on moving toward cooperation after a previous defection or on the overall level of cooperation over rounds. Furthermore, our results underline the crucial importance of a good model selection procedure, showing how a poor choice of statistical model can provide misleading results.


1984 ◽  
Vol 55 (3) ◽  
pp. 687-696 ◽  
Author(s):  
Rick M. Gardner ◽  
Terry L. Corbin ◽  
Janelle S. Beltramo ◽  
Gary S. Nickell

Cooperation in pairs of rats playing the prisoner's dilemma game was investigated. Six pairs of animals were taught to make either cooperative or uncooperative responses by running to one or the other end of a T-maze. Two T-mazes were joined together such that animals could respond simultaneously. Animals were run under conditions in which visual communication was present and absent. Mutually uncooperative responses were the most common and mutually cooperative behaviors the least preferred. Introduction of a barrier between the mazes, which removed visual communication between pairs, sharply accentuated uncooperative behavior. Similarities of the present findings to results with human subjects and the implications of using game theory for studying cooperative behavior in animals are discussed.


Kybernetes ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Josef Spurný ◽  
Ivan Kopeček ◽  
Radek Ošlejšek ◽  
Jaromír Plhák ◽  
Francesco Caputo

Purpose The aim of the paper is to analyze the impact of cooperativeness of managers who occupy central positions in interaction networks on the performance and stress levels of a whole organization. Design/methodology/approach To explore this relationship, a multi-parameter agent-based model is proposed which implements the prisoner’s dilemma game approach on a scale-free network in the NetLogo environment. A description of the socioeconomic aspects and the key concepts implemented in the model is provided. Stability and correctness have been tested through a series of validation experiments, including sensitivity analysis. The source code is available for further exploration and testing. Findings The simulations revealed that improving the stress resistance of all employees moderately increases organizational performance. Analyzing managers’ roles showed that increasing only the stress resistance of managers does not account for significantly higher overall performance. However, a substantial increase in organizational performance and a decrease in stress levels are achieved when managers are unconditionally cooperative. This effect is stronger for the lowered stress resistance of employees. Therefore, the willingness of managers to cooperate under all circumstances can be a key factor in achieving better performance and building a more pleasant, stress-free working environment. Originality/value This paper aims to present a model for analyzing cooperation, specifically in the organizational context, extending the prisoner’s dilemma with novel concepts and mechanisms. Although the results confirm the existing theories about the importance of central nodes in complex networks, they also provide further details on how the cooperative behavior of central nodes (i.e. the managers) might benefit the organization.


Author(s):  
Xinting Hu ◽  
Mengyun Wu

In this paper, an improved evolutionary prisoner’s dilemma (PD) game model is proposed by considering the weighting effect. Taking into account individual’s perceived payoff (benefits), the evolutionary tendency of the cooperators and three equilibrium points of the proposed model are obtained. We then numerically investigate how different exterior and interior factors influence on individuals’ cooperative behavior and their payoff both in the ER random network and the BA scale-free network. Our results reveal that the heterogeneous network structure is conducive to cooperation. In addition, the existence of leader nodes is an important driving force for promoting individuals’ cooperation. By further analyzing the rationality coefficient which appears in the weighting function, we obtain that a greater of irrationality could lead more people to take cooperative strategies. Finally, two indicators which are used to measure the real average payoff and perceived average payoff are defined. The results show that the real average payoff and perceived average payoff are larger in the heterogeneity network than that in homogeneous network.


Sign in / Sign up

Export Citation Format

Share Document