scholarly journals GROUPOID SYMMETRY AND CONSTRAINTS IN GENERAL RELATIVITY

2013 ◽  
Vol 15 (01) ◽  
pp. 1250061 ◽  
Author(s):  
CHRISTIAN BLOHMANN ◽  
MARCO CEZAR BARBOSA FERNANDES ◽  
ALAN WEINSTEIN

When the vacuum Einstein equations are cast in the form of Hamiltonian evolution equations, the initial data lie in the cotangent bundle of the manifold [Formula: see text] of Riemannian metrics on a Cauchy hypersurface Σ. As in every Lagrangian field theory with symmetries, the initial data must satisfy constraints. But, unlike those of gauge theories, the constraints of general relativity do not arise as momenta of any Hamiltonian group action. In this paper, we show that the bracket relations among the constraints of general relativity are identical to the bracket relations in the Lie algebroid of a groupoid consisting of diffeomorphisms between space-like hypersurfaces in spacetimes. A direct connection is still missing between the constraints themselves, whose definition is closely related to the Einstein equations, and our groupoid, in which the Einstein equations play no role at all. We discuss some of the difficulties involved in making such a connection. In an appendix, we develop some aspects of diffeology, the basic framework for our treatment of function spaces.

1998 ◽  
Vol 07 (04) ◽  
pp. 549-566 ◽  
Author(s):  
ABHAY ASHTEKAR ◽  
VIQAR HUSAIN

Certain features associated with the symmetry reduction of the vacuum Einstein equations by two commuting, spacelike Killing vector fields are studied. In particular, the discussion encompasses the equations for the Gowdy T3 cosmology and cylindrical gravitational waves. We first point out a relation between the SL(2,R) (or SO(3)) σ and principal chiral models, and then show that the reduced Einstein equations can be obtained from a dimensional reduction of the standard SL(2,R) σ-model in three dimensions. The reduced equations can also be derived from the action of a 'generalized' two dimensional SL(2,R) σ-model with a time dependent constraint. We give a Hamiltonian formulation of this action, and show that the Hamiltonian evolution equations for certain phase space variables are those of a certain generalization of the principal chiral model. Using these Hamiltonian equations, we give a prescription for obtaining an infinite set of constants of motion explicitly as functionals of the spacetime metric variables.


Author(s):  
Laurent Baulieu ◽  
John Iliopoulos ◽  
Roland Sénéor

A geometrical derivation of Abelian and non- Abelian gauge theories. The Faddeev–Popov quantisation. BRST invariance and ghost fields. General discussion of BRST symmetry. Application to Yang–Mills theories and general relativity. A brief history of gauge theories.


2006 ◽  
Vol 03 (01) ◽  
pp. 81-141 ◽  
Author(s):  
PIOTR T. CHRUŚCIEL ◽  
SZYMON ŁȨSKI

The study of Einstein equations leads naturally to Cauchy problems with initial data on hypersurfaces which closely resemble hyperboloids in Minkowski space-time, and with initial data with polyhomogeneous asymptotics, that is, with asymptotic expansions in terms of powers of ln r and inverse powers of r. Such expansions also arise in the conformal method for analysing wave equations in odd space-time dimension. In recent work it has been shown that for non-linear wave equations, or for wave maps, polyhomogeneous initial data lead to solutions which are also polyhomogeneous provided that an infinite hierarchy of corner conditions holds. In this paper we show that the result is true regardless of corner conditions.


Author(s):  
JE-AN GU

We discuss the stability of the general-relativity (GR) limit in modified theories of gravity, particularly the f(R) theory. The problem of approximating the higher-order differential equations in modified gravity with the Einstein equations (2nd-order differential equations) in GR is elaborated. We demonstrate this problem with a heuristic example involving a simple ordinary differential equation. With this example we further present the iteration method that may serve as a better approximation for solving the equation, meanwhile providing a criterion for assessing the validity of the approximation. We then discuss our previous numerical analyses of the early-time evolution of the cosmological perturbations in f(R) gravity, following the similar ideas demonstrated by the heuristic example. The results of the analyses indicated the possible instability of the GR limit that might make the GR approximation inaccurate in describing the evolution of the cosmological perturbations in the long run.


Author(s):  
H.S. Vieira ◽  
V.B. Bezerra

In this paper, we use the Lagrangian formalism of classical mechanics and some assumptions to obtain cosmological differential equations analogous to Friedmann and Einstein equations, obtained from the theory of general relativity. This method can be used to a universe constituted of incoherent matter, that is, the cosmologic substratum is comprised of dust.


2021 ◽  
Vol 36 (08n09) ◽  
pp. 2150060
Author(s):  
Spiros Cotsakis ◽  
Dimitrios Trachilis

We study the problem of the instability of inhomogeneous radiation universes in quadratic Lagrangian theories of gravity written as a system of evolution equations with constraints. We construct formal series expansions and show that the resulting solutions have a smaller number of arbitrary functions than that required in a general solution. These results continue to hold for more general polynomial extensions of general relativity.


Sign in / Sign up

Export Citation Format

Share Document