scholarly journals The radiation instability in modified gravity

2021 ◽  
Vol 36 (08n09) ◽  
pp. 2150060
Author(s):  
Spiros Cotsakis ◽  
Dimitrios Trachilis

We study the problem of the instability of inhomogeneous radiation universes in quadratic Lagrangian theories of gravity written as a system of evolution equations with constraints. We construct formal series expansions and show that the resulting solutions have a smaller number of arbitrary functions than that required in a general solution. These results continue to hold for more general polynomial extensions of general relativity.

2019 ◽  
Vol 28 (05) ◽  
pp. 1942004 ◽  
Author(s):  
Radouane Gannouji

In this first chapter of the Special Issue on Modified Theories of Gravity and Constraints Imposed by Recent GW Observations, we review observational constraints on gravity and the possibility to construct an alternative model to general relativity. For that, we motivate the study of theories beyond Einstein’s gravity, some of their phenomenology and the various ingredients to build a consistent model.


2020 ◽  
Vol 29 (09) ◽  
pp. 2050068 ◽  
Author(s):  
Gauranga C. Samanta ◽  
Nisha Godani ◽  
Kazuharu Bamba

We have proposed a novel shape function on which the metric that models traversable wormholes is dependent. Using this shape function, the energy conditions, equation-of-state and anisotropy parameter are analyzed in [Formula: see text] gravity, [Formula: see text] gravity and general relativity. Furthermore, the consequences obtained with respect to these theories are compared. In addition, the existence of wormhole geometries is investigated.


2015 ◽  
Vol 24 (07) ◽  
pp. 1550053 ◽  
Author(s):  
Amare Abebe

One of the exact solutions of f(R) theories of gravity in the presence of different forms of matter exactly mimics the ΛCDM solution of general relativity (GR) at the background level. In this work we study the evolution of scalar cosmological perturbations in the covariant and gauge-invariant formalism and show that although the background in such a model is indistinguishable from the standard ΛCDM cosmology, this degeneracy is broken at the level of first-order perturbations. This is done by predicting different rates of structure formation in ΛCDM and the f(R) model both in the complete and quasi-static regimes.


2010 ◽  
Vol 25 (27) ◽  
pp. 2325-2332 ◽  
Author(s):  
PUXUN WU ◽  
HONGWEI YU

The f(G) gravity is a theory to modify the general relativity and it can explain the present cosmic accelerating expansion without the need of dark energy. In this paper the f(G) gravity is tested with the energy conditions. Using the Raychaudhuri equation along with the requirement that the gravity is attractive in the FRW background, we obtain the bounds on f(G) from the SEC and NEC. These bounds can also be found directly from the SEC and NEC within the general relativity context by the transformations: ρ → ρm + ρE and p → pm + pE, where ρE and pE are the effective energy density and pressure in the modified gravity. With these transformations, the constraints on f(G) from the WEC and DEC are obtained. Finally, we examine two concrete examples with WEC and obtain the allowed region of model parameters.


1968 ◽  
Vol 90 (4) ◽  
pp. 666-670 ◽  
Author(s):  
D. H. Cheng ◽  
H. J. Thailer

A general solution is presented for a thin, curved circular tube under in-plane bending. It includes the solution given by Clark and Reissner as a particular case in which the ratio of the radius of the tube to the radius of its center line is very small. The series expansions satisfy the equilibrium equation for any radius ratio while the compatibility condition is guaranteed by minimizing the complementary energy. The minimization is achieved in the manner of Raileigh-Ritz whereas the evaluation of integrals are facilitated by the use of binomial expansion. Numerical results correlate well with the experimental data. The solution is more rapidly convergent as compared to the existing analytical methods.


Author(s):  
JE-AN GU

We discuss the stability of the general-relativity (GR) limit in modified theories of gravity, particularly the f(R) theory. The problem of approximating the higher-order differential equations in modified gravity with the Einstein equations (2nd-order differential equations) in GR is elaborated. We demonstrate this problem with a heuristic example involving a simple ordinary differential equation. With this example we further present the iteration method that may serve as a better approximation for solving the equation, meanwhile providing a criterion for assessing the validity of the approximation. We then discuss our previous numerical analyses of the early-time evolution of the cosmological perturbations in f(R) gravity, following the similar ideas demonstrated by the heuristic example. The results of the analyses indicated the possible instability of the GR limit that might make the GR approximation inaccurate in describing the evolution of the cosmological perturbations in the long run.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Viktor Toth ◽  
Jean-Pierre Luminet

Viktor Toth adds theoretical insights to the modified theories of gravity that aimed to solve the dark matter problem without necessitating the existence of hypothetic particles of nonbaryonic matter.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Luca Buoninfante ◽  
Gaetano Lambiase ◽  
Luciano Petruzziello

AbstractIn this paper, we study the phenomenon of quantum interference in the presence of external gravitational fields described by alternative theories of gravity. We analyze both non-relativistic and relativistic effects induced by the underlying curved background on a superposed quantum system. In the non-relativistic regime, it is possible to come across a gravitational counterpart of the Bohm–Aharonov effect, which results in a phase shift proportional to the derivative of the modified Newtonian potential. On the other hand, beyond the Newtonian approximation, the relativistic nature of gravity plays a crucial rôle. Indeed, the existence of a gravitational time dilation between the two arms of the interferometer causes a loss of coherence that is in principle observable in quantum interference patterns. We work in the context of generalized quadratic theories of gravity to compare their physical predictions with the analogous outcomes in general relativity. In so doing, we show that the decoherence rate strongly depends on the gravitational model under investigation, which means that this approach turns out to be a promising test bench to probe and discriminate among all the extensions of Einstein’s theory in future experiments.


2021 ◽  
Author(s):  
Gerard ’t Hooft

It is suspected that the quantum evolution equations describing the micro-world as we know it are of a special kind that allows transformations to a special set of basis states in Hilbert space, such that, in this basis, the evolution is given by elements of the permutation group. This would restore an ontological interpretation. It is shown how, at low energies per particle degree of freedom, almost any quantum system allows for such a transformation. This contradicts Bell’s theorem, and we emphasise why some of the assumptions made by Bell to prove his theorem cannot hold for the models studied here. We speculate how an approach of this kind may become helpful in isolating the most likely version of the Standard Model, combined with General Relativity. A link is suggested with black hole physics.


Sign in / Sign up

Export Citation Format

Share Document