scholarly journals Vertex Lie algebras and cyclotomic coinvariants

2017 ◽  
Vol 19 (02) ◽  
pp. 1650015 ◽  
Author(s):  
Benoît Vicedo ◽  
Charles Young

Given a vertex Lie algebra [Formula: see text] equipped with an action by automorphisms of a cyclic group [Formula: see text], we define spaces of cyclotomic coinvariants over the Riemann sphere. These are quotients of tensor products of smooth modules over “local” Lie algebras [Formula: see text] assigned to marked points [Formula: see text], by the action of a “global” Lie algebra [Formula: see text] of [Formula: see text]-equivariant functions. On the other hand, the universal enveloping vertex algebra [Formula: see text] of [Formula: see text] is itself a vertex Lie algebra with an induced action of [Formula: see text]. This gives “big” analogs of the Lie algebras above. From these we construct the space of “big” cyclotomic coinvariants, i.e. coinvariants with respect to [Formula: see text]. We prove that these two definitions of cyclotomic coinvariants in fact coincide, provided the origin is included as a marked point. As a corollary, we prove a result on the functoriality of cyclotomic coinvariants which we require for the solution of cyclotomic Gaudin models in [B. Vicedo and C. Young, Cyclotomic Gaudin models: Construction and Bethe ansatz, preprint (2014); arXiv:1409.6937]. At the origin, which is fixed by [Formula: see text], one must assign a module over the stable subalgebra [Formula: see text] of [Formula: see text]. This module becomes a [Formula: see text]-quasi-module in the sense of Li. As a bi-product we obtain an iterate formula for such quasi-modules.

2001 ◽  
Vol 16 (07) ◽  
pp. 1199-1225 ◽  
Author(s):  
A. J. MACFARLANE ◽  
HENDRYK PFEIFFER ◽  
F. WAGNER

To provide tools, especially L-operators, for use in studies of rational Yang–Baxter algebras and quantum integrable models when the Lie algebras so (N)(bn, dn) or sp (2n)(cn) are the invariance algebras of their R matrices, this paper develops a presentation of these Lie algebras convenient for the context, and derives many properties of the matrices of their defining representations and of the ad-invariant tensors that enter their multiplication laws. Metaplectic-type representations of sp (2n) and so (N) on bosonic and on fermionic Fock spaces respectively are constructed. Concise general expressions (see (5.2) and (5.5) below) for their L-operators are obtained, and used to derive simple formulas for the T operators of the rational RTT algebra of the associated integral systems, thereby enabling their efficient treatment by means of the algebraic Bethe ansatz.


2012 ◽  
Vol 23 (08) ◽  
pp. 1250079
Author(s):  
YULY BILLIG

We consider a semidirect product of the sheaf of vector fields on a manifold ℂ* × X with a central extension of the sheaf of Lie algebras of maps from ℂ* × X into a finite-dimensional simple Lie algebra, viewed as sheaves on X. Using vertex algebra methods we construct sheaves of modules for this sheaf of Lie algebras. Our results extend the work of Malikov–Schechtman–Vaintrob on the chiral de Rham complex.


1994 ◽  
Vol 05 (01) ◽  
pp. 61-85 ◽  
Author(s):  
GREG KUPERBERG

We derive an inductive, combinatorial definition of a polynomial-valued regular isotopy invariant of links and tangled graphs. We show that the invariant equals the Reshetikhin-Turaev invariant corresponding to the exceptional simple Lie algebra G2. It is therefore related to G2 in the same way that the HOMFLY polynomial is related to An and the Kauffman polynomial is related to Bn, Cn, and Dn. We give parallel constructions for the other rank 2 Lie algebras and present some combinatorial conjectures motivated by the new inductive definitions.


2019 ◽  
Vol 19 (02) ◽  
pp. 2050024
Author(s):  
E. Dorado-Aguilar ◽  
R. García-Delgado ◽  
E. Martínez-Sigala ◽  
M. C. Rodríguez-Vallarte ◽  
G. Salgado

In this work, we show that the existence of invertible generalized derivations impose strong restrictions on the structure of a complex finite-dimensional Lie algebra. In particular, we recover the fact that a real Lie algebra admitting an abelian complex structure is necessarily solvable. On the other hand, we state a structure theorem for a Lie algebra [Formula: see text] admitting a periodic generalized derivation [Formula: see text].


2007 ◽  
Vol 5 ◽  
pp. 195-200
Author(s):  
A.V. Zhiber ◽  
O.S. Kostrigina

In the paper it is shown that the two-dimensional dynamical system of equations is Darboux integrable if and only if its characteristic Lie algebra is finite-dimensional. The class of systems having a full set of fist and second order integrals is described.


2018 ◽  
Vol 13 (3) ◽  
pp. 59-63 ◽  
Author(s):  
D.T. Siraeva

Equations of hydrodynamic type with the equation of state in the form of pressure separated into a sum of density and entropy functions are considered. Such a system of equations admits a twelve-dimensional Lie algebra. In the case of the equation of state of the general form, the equations of gas dynamics admit an eleven-dimensional Lie algebra. For both Lie algebras the optimal systems of non-similar subalgebras are constructed. In this paper two partially invariant submodels of rank 3 defect 1 are constructed for two-dimensional subalgebras of the twelve-dimensional Lie algebra. The reduction of the constructed submodels to invariant submodels of eleven-dimensional and twelve-dimensional Lie algebras is proved.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Bao-ning Du ◽  
Min-xin Huang

Abstract We continue the study of a novel relation between quantum periods and TBA(Thermodynamic Bethe Ansatz)-like difference equations, generalize previous works to a large class of Calabi-Yau geometries described by three-term quantum operators. We give two methods to derive the TBA-like equations. One method uses only elementary functions while the other method uses Faddeev’s quantum dilogarithm function. The two approaches provide different realizations of TBA-like equations which are nevertheless related to the same quantum period.


Author(s):  
Ruipu Bai ◽  
Shuai Hou ◽  
Yansha Gao

We study the structure of n-Lie algebras with involutive derivations for n≥2. We obtain that a 3-Lie algebra A is a two-dimensional extension of Lie algebras if and only if there is an involutive derivation D on A=A1  ∔  A-1 such that dim A1=2 or dim A-1=2, where A1 and A-1 are subspaces of A with eigenvalues 1 and -1, respectively. We show that there does not exist involutive derivations on nonabelian n-Lie algebras with n=2s for s≥1. We also prove that if A is a (2s+2)-dimensional (2s+1)-Lie algebra with dim A1=r, then there are involutive derivations on A if and only if r is even, or r satisfies 1≤r≤s+2. We discuss also the existence of involutive derivations on (2s+3)-dimensional (2s+1)-Lie algebras.


2005 ◽  
Vol 15 (03) ◽  
pp. 793-801 ◽  
Author(s):  
ANTHONY M. BLOCH ◽  
ARIEH ISERLES

In this paper we develop a theory for analysing the "radius" of the Lie algebra of a matrix Lie group, which is a measure of the size of its commutators. Complete details are given for the Lie algebra 𝔰𝔬(n) of skew symmetric matrices where we prove [Formula: see text], X, Y ∈ 𝔰𝔬(n), for the Frobenius norm. We indicate how these ideas might be extended to other matrix Lie algebras. We discuss why these ideas are of interest in applications such as geometric integration and optimal control.


Sign in / Sign up

Export Citation Format

Share Document