STOCHASTIC MODELING AND ANALYSIS OF AN ACTIVE CONGESTION CONTROL PROTOCOL UNDER DIFFERENTIATED BURSTY TRAFFIC

2007 ◽  
Vol 08 (04) ◽  
pp. 369-385
Author(s):  
LAN WANG ◽  
GEYONG MIN ◽  
IRFAN AWAN

Traffic congestion degrades not only the user-perceived Quality-of-Service (QoS), such as leading to high packet loss rates, low throughput, and increased delays, but also causes excessive energy consumption in energy-sensitive systems (e.g., wireless sensor networks). A simple way to detect congestion is to monitor and measure queue length in network nodes or routers. This paper develops an analytical performance model for a finite capacity queueing system with an enhanced Random Early Detection (RED) congestion control scheme based on the instantaneous queue length in the presence of differentiated classes of bursty traffic. The aggregate traffic is captured by the superposition of 2-state Markov Modulated Poisson Processes (MMPP). The individual threshold is assigned to each traffic class in order to differentially control traffic injection rate. The accuracy of this model is verified by comparing the analytical results against those obtained from simulation experiments. The model is adopted to investigate the effects of traffic burstiness and system capacity on the performance of the congestion control scheme.

2006 ◽  
Vol 07 (01) ◽  
pp. 163-177
Author(s):  
ASFAND-E YAR ◽  
I. U. AWAN ◽  
M. E. WOODWARD

Evolution in Wireless Technologies and Networks imposes a greater need for network support as current congestion control and avoidance techniques are mainly designed for wired networks. The current performance evaluation techniques proposed for wireless networks are not able to achieve optimal performance to guarantee desired Quality of Service (QoS) standards. Thus, the new schemes such as Active Queue Management (AQM) are needed to be adaptive to dynamic wireless networks and bursty traffic conditions to help in avoiding severe performance degradation in wireless environment. Thus, in this paper we developed and validated a novel approximate analytical performance model of a multiple threshold Random Early Detection (RED) congestion control mechanism based on the principle of Maximum Entropy (ME). It can be employed at the wireless gateways/base stations to regulate the buffer management and bandwidth allocation. Closed form expressions for the state and blocking probabilities have also been characterized. Numerical examples have been presented for aggregate and marginal QoS measures, which show the credibility of the ME solution and its validation against simulation.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1667
Author(s):  
Wen-Chung Tsai ◽  
Sao-Jie Chen ◽  
Yu-Hen Hu ◽  
Mao-Lun Chiang

A novel network-on-chip (NoC) integrated congestion control and flow control scheme, called Network-Cognitive Traffic Control (NCogn.TC), is proposed. This scheme is cognizant of the fluidity levels in on-chip router buffers and it uses this measurement to prioritize the forwarding of flits in the buffers. This preferential forwarding policy is based on the observation that flits with higher levels of fluidity are likely to arrive at their destinations faster, because they may require fewer routing steps. By giving higher priority to forward flits in high-fluidity buffers, scarce buffer resources may be freed-up sooner in order to relieve on-going traffic congestion. In this work, a buffer cognition monitor is developed to rapidly estimate the buffer fluidity level. An integrated congestion control and flow control algorithm is proposed based on the estimated buffer fluidity level. Tested with both synthetic traffic patterns as well as industry benchmark traffic patterns, significant performance enhancement has been observed when the proposed Network-Cognitive Traffic Control is compared against conventional traffic control algorithms that only monitor the buffer fill level.


2012 ◽  
Vol 2 (11) ◽  
pp. 104-106
Author(s):  
C.Md.Jamsheed C.Md.Jamsheed ◽  
◽  
D.Surendra D.Surendra ◽  
D.Venkatesh D.Venkatesh

2020 ◽  
Vol 4 (26) ◽  
pp. 59-66
Author(s):  
A. G. Morozkov ◽  
◽  
M. R. Yazvenko ◽  

The article presents simplified queuing system model of freight marine port. The article discusses the basic elements of queuing system, its mathematical solution and structure. Simulation model was created using AnyLogic to analyze an effect of system capacity on queue length. The results were analyzed and the solution for queue optimization was proposed. Key words: queuing system, simulation modeling, AnyLogic, marine port, servers, queue.


2019 ◽  
Vol 14 ◽  
Author(s):  
Tayyab Khan ◽  
Karan Singh ◽  
Kamlesh C. Purohit

Background: With the growing popularity of various group communication applications such as file transfer, multimedia events, distance learning, email distribution, multiparty video conferencing and teleconferencing, multicasting seems to be a useful tool for efficient multipoint data distribution. An efficient communication technique depends on the various parameters like processing speed, buffer storage, and amount of data flow between the nodes. If data exceeds beyond the capacity of a link or node, then it introduces congestion in the network. A series of multicast congestion control algorithms have been developed, but due to the heterogeneous network environment, these approaches do not respond nor reduce congestion quickly whenever network behavior changes. Objective: Multicasting is a robust and efficient one-to-many (1: M) group transmission (communication) technique to reduced communication cost, bandwidth consumption, processing time and delays with similar reliability (dependability) as of regular unicast. This patent presents a novel and comprehensive congestion control method known as integrated multicast congestion control approach (ICMA) to reduce packet loss. Methods: The proposed mechanism is based on leave-join and flow control mechanism along with proportional integrated and derivate (PID) controller to reduce packet loss, depending on the congestion status. In the proposed approach, Proportional integrated and derivate controller computes expected incoming rate at each router and feedback this rate to upstream routers of the multicast network to stabilize their local buffer occupancy. Results: Simulation results on NS-2 exhibit the immense performance of the proposed approach in terms of delay, throughput, bandwidth utilization, and packet loss than other existing methods. Conclusion: The proposed congestion control scheme provides better bandwidth utilization and throughput than other existing approaches. Moreover, we have discussed existing congestion control schemes with their research gaps. In the future, we are planning to explore the fairness and quality of service issue in multicast communication.


Sign in / Sign up

Export Citation Format

Share Document