CHRONOLOGICAL TREE — A COMPRESSED STRUCTURE FOR MINING BEHAVIORAL PATTERNS FROM WIRELESS SENSOR NETWORKS

2008 ◽  
Vol 09 (03) ◽  
pp. 255-276 ◽  
Author(s):  
SAMER SAMARAH ◽  
AZZEDINE BOUKERCHE

Wireless Sensor Networks (WSNs) have proven their success in a variety of applications for monitoring physical and critical environments. However, the streaming nature, limited resources, and the unreliability of wireless communication are among the factors that affect the Quality of Service (QoS) of WSNs. In this paper, we propose a data mining technique to extract behavioral patterns about the sensor nodes during their operation. The behavioral patterns, which we refer to as Chronological Patterns, can be thought of as tutorials that teach about the set of sensors that report on events within a defined time interval and the order in which the events were detected. Chronological Patterns can serve as a helpful tool for predicting behaviors in order to enhance the performance of the WSN and thus improve the overall QoS. The proposed technique consists of: a formal definition of the Chronological Patterns and a new representation structure, which we refer to as Chlorotical Tree (CT), that facilities the mining of these patterns. To report about the performance of the CT, several experiments have been conducted to evaluate the CT using different density factors.

The fundamental issue is framing the sensor nodes and steering the information from sender node to receiver node in wireless sensor networks (WSN). To resolve this major difficulty, clustering algorithm is one of the accessible methods employed in wireless sensor networks. Still, clustering concept also faces some hurdles while transmitting the data from source to destination node. The sensor node is used to sense the data and the source node helps to convey the information and the intended recipient receives the sensed information. The clustering proposal will choose the cluster head depending on the residual energy and the sensor utility to its cluster members. The cluster heads will have equal cluster number of nodes. The complexity is generated in computing the shortest path and this can be optimized by Dijkstra’s algorithm. The optimization is executed by Dijkstra’s shortest path algorithm that eliminates the delay in packet delivery, energy consumption, lifetime of the packet and hop count while handling the difficulties. The shortest path calculation will improve the quality of service (QoS). QoS is the crucial problem due to loss of energy and resource computation as well as the privacy in wireless sensor networks. The security can be improvised in this projected work. The preventive metrics are discussed to upgrade the QoS facility by civilizing the privacy parameter called as Safe and Efficient Query Processing (SAFEQ) and integrating the extended watchdog algorithm in wireless sensor networks.


Author(s):  
SARANYA. S ◽  
GOWRI. V

Recent technological advances have facilitated the widespread use of wireless sensor networks in many applications such as battle field surveillance, environmental observations, biological detection and industrial diagnostics. In wireless sensor networks, sensor nodes are typically power-constrained with limited lifetime, and so it’s necessary to understand however long the network sustains its networking operations. We can enhance the quality of monitoring in wireless sensor networks by increasing the WSNs lifetime. At the same time WSNs are deployed for monitoring in a range of critical domains such as military, healthcare etc. Accordingly, these WSNs are vulnerable to attacks. Now this proposed work concentrate on maximizing the security of WSNs with the already existing approach (i.e. combination of A* and fuzzy approach) for maximizing the lifetime of WSNs. This paper ensures sensed data security by providing authenticity, integrity, confidentiality. So, this approach provides more effective and efficient way for maximizing the lifetime and security of the WSNs.


Author(s):  
Ahona Ghosh ◽  
Chiung Ching Ho ◽  
Robert Bestak

Wireless sensor networks consist of unattended small sensor nodes having low energy and low range of communication. It has been observed that if there is any system to periodically start and stop the sensors sensing activities, then it saves some energy, and thus, the network lifetime gets extended. According to the current literature, security and energy efficiency are the two main concerns to improve the quality of service during transmission of data in wireless sensor networks. Machine learning has proved its efficiency in developing efficient processes to handle complex problems in various network aspects. Routing in wireless sensor network is the process of finding the route for transmitting data among different sensor nodes according to the requirement. Machine learning has been used in a broad way for designing energy efficient routing protocols, and this chapter reviews the existing works in the said domain, which can be the guide to someone who wants to explore the area further.


2020 ◽  
Vol 2020 ◽  
pp. 1-21 ◽  
Author(s):  
Adil Hilmani ◽  
Abderrahim Maizate ◽  
Larbi Hassouni

With the increasing number of vehicles, the management of parking spaces in cities is becoming increasingly important in improving the quality of life and combating air pollution. Indeed, finding a parking space at peak times and in congested areas of the population becomes a huge challenge for drivers. To remedy this problem, most modern cities have smart parking. The equipment of these smart parking is mainly based on the implementation of wireless sensor networks (WSN) to monitor, track, and collect real-time information on the occupancy status of each parking space. This information is then made available to drivers who are looking for an available parking space. However, sensor nodes have limitations in terms of energy and communication that affect the performance and quality of the wireless sensor network. Therefore, the design of a self-organization protocol for WSN that minimizes power consumption and maximizes the longevity of the WSN network must be taken into account when implementing and developing a sustainable and viable intelligent parking system. In this paper, we propose a protocol for self-organization of wireless sensor networks (WSN) for the management of parking spaces in outdoor and urban car parks. This protocol is based on building clusters using ZigBee transmission technology for multihop communication. Each sensor node will be installed in the ground of each parking space to monitor its availability by sending the empty or busy state of that space to the gateway using cluster head nodes (CHs). This approach has a robust and efficient self-organizing algorithm that minimizes energy dissipation and increases the lifetime of sensor nodes and the WSN network. The simulation results show that parking management systems in outdoor and urban car parks using the self-organization protocol presented are efficient and sustainable in terms of energy consumption, reliability of data transmission, and the longevity of the WSN network compared to other existing parking systems that use different self-organizing protocols for wireless sensor networks.


Author(s):  
Omar Adil Mahdi ◽  
Yusor Rafid Bahar Al-Mayouf ◽  
Ahmed Basil Ghazi ◽  
Mazin Abed Mohammed ◽  
Ainuddin Wahid Abdul Wahab ◽  
...  

<p>Energy and memory limitations are considerable constraints of sensor nodes in wireless sensor networks (WSNs). The limited energy supplied to network nodes causes WSNs to face crucial functional limitations. Therefore, the problem of limited energy resource on sensor nodes can only be addressed by using them efficiently. In this research work, an energy-balancing routing scheme for in-network data aggregation is presented. This scheme is referred to as Energy-aware and load-Balancing Routing scheme for Data Aggregation (hereinafter referred to as EBR-DA). The EBRDA aims to provide an energy efficient multiple-hop routing to the destination on the basis of the quality of the links between the source and destination. In view of this goal, a link cost function is introduced to assess the quality of the links by considering the new multi-criteria node weight metric, in which energy and load balancing are considered. The node weight is considered in constructing and updating the routing tree to achieve dynamic behavior for event-driven WSNs. The proposed EBR-DA was evaluated and validated by simulation, and the results were compared with those of InFRA and DRINA by using performance metrics for dense static networks.</p>


2014 ◽  
Vol 556-562 ◽  
pp. 6311-6315
Author(s):  
Yong Qing Wang ◽  
Jing Tian Tang ◽  
Xing Po Ma

We study data aggregation for region-based top-k queries in wireless sensor networks, which is one kind of internet of things. Because the energy of sensor nodes is limited and a sensor node will die if it has no energy left, one of the important targets for all protocols in wireless sensor networks is to decrease the energy consumption of the sensor nodes. For a sensor node, communication cost is much more than other kinds of energy cost such as energy cost on computation and data storage. Thus, a very efficient way to decrease the energy cost of the sensor nodes is to decrease the quality of the sensing data that will be transmitted to the base station. In this paper, we use the technique of data aggregation to achieve this goal, and propose an algorithm to construct a novel Data Aggregation Tree (DAT) in the query region. To check the efficiency of DAT, we have made a simulation on OMNET, and the results show that DAT can shrink large quality of data when they are transmitted to the base station, and the life time of the sensor networks can thus be prolonged..


Author(s):  
Carlos Abreu ◽  
P. M. Mendes

Biomedical wireless sensor networks are a key technology to enable the development of new healthcare services and/or applications, reducing costs and improving the citizen's quality of life. However, since they deal with health data, such networks should implement mechanisms to enforce high levels of quality of service. In most cases, the sensor nodes that form such networks are small and battery powered, and these extra quality of service mechanisms mean significant lifetime reduction due to the extra energy consumption. The network lifetime is thus a relevant feature to ensure the necessary quality of service requirements. In order to maximise the network lifetime, and its ability to offer the required quality of service, new strategies are needed to increase the energy efficiency, and balance in the network. The focus of this work goes to the effective use of the available energy in each node, combined with information about the reliability of the wireless links, as a metric to form reliable and energy-aware routes throughout the network. This paper present and discusses two different deployment strategies using energy-aware routing and relay nodes, assessed for different logical topologies. The authors' conclusion is that the use of energy-aware routing combined with strategic placed relay nodes my increase the network lifetime as high as 45%.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Adnan Anwar Awan ◽  
Muhammad Amir Khan ◽  
Aqdas Naveed Malik ◽  
Syed Ayaz Ali Shah ◽  
Aamir Shahzad ◽  
...  

Wireless sensor networks (WSNs) deployed in harsh and unfavorable environments become inoperable because of the failure of multiple sensor nodes. This results into the division of WSNs into small disjoint networks and causes stoppage of the transmission to the sink node. Furthermore, the internodal collaboration among sensor nodes also gets disturbed. Internodal connectivity is essential for the usefulness of WSNs. The arrangement of this connectivity could be setup at the time of network startup. If multiple sensor nodes fail, the tasks assigned to those nodes cannot be performed; hence, the objective of such WSNs will be compromised. Recently, different techniques for repositioning of sensor nodes to recover the connectivity have been proposed. Although capable to restore connectivity, these techniques do not focus on the coverage loss. The objective of this research is to provide a solution for both coverage and connectivity via an integrated approach. A novel technique to reposition neighbouring nodes for multinode failure is introduced. In this technique, neighbouring nodes of the failed nodes relocate themselves one by one and come back to their original location after some allocated time. Hence, it restores both prefailure connectivity and coverage. The simulations show our proposed technique outperforms other baseline techniques.


2013 ◽  
Vol 4 (3) ◽  
pp. 776-787
Author(s):  
Nitin Nitin

This paper presents, Application of Gur Game Based Algorithm on Wireless Sensor Networks (WSNs) deployed to monitor Homogenous and Heterogeneous Grid in order to achieve Quality of Service (QoS) = 0.40 and 0.50. Further, the objectives of all these algorithms are to maximize the coverage of the sensor area while conserving energy consumed by sensor nodes. This is achieved via carefully activating/deactivating the sensors while maximizing the coverage area.


2013 ◽  
Vol 6 (3) ◽  
pp. 379-399
Author(s):  
Partha Pratim Bhattacharya ◽  
Neha Rathi

While wireless sensor networks are increasingly equipped to handle more complicated functions, these battery poweredsensors which used in network processing, use their constrained energy to enhance the lifetime of the network especially in a heterogeneous settings. Clustered techniques have since been employed to optimize energy consumption in this energy constrained wireless sensor networks. In Classical clustering protocols, equal energy is assigned to all nodes andthey cannot take full benefit of the presence of node heterogeneity. SEP, a heterogeneous-aware protocol is used to prolong the time interval before the death of the first node which is crucial for many applications where the feedback fromthe sensor network must be reliable. The performance of SEP in comparison to LEACH Protocol is analyzed in this paperwhose goal is to increase the stable region and as a result decrease the unstable region and improve the quality of thefeedback of wireless sensor network, in presence of heterogeneous nodes.


Sign in / Sign up

Export Citation Format

Share Document