scholarly journals MAXIMIZING THE LIFETIME AND SECURITY OF WIRELESS SENSOR NETWORKS

Author(s):  
SARANYA. S ◽  
GOWRI. V

Recent technological advances have facilitated the widespread use of wireless sensor networks in many applications such as battle field surveillance, environmental observations, biological detection and industrial diagnostics. In wireless sensor networks, sensor nodes are typically power-constrained with limited lifetime, and so it’s necessary to understand however long the network sustains its networking operations. We can enhance the quality of monitoring in wireless sensor networks by increasing the WSNs lifetime. At the same time WSNs are deployed for monitoring in a range of critical domains such as military, healthcare etc. Accordingly, these WSNs are vulnerable to attacks. Now this proposed work concentrate on maximizing the security of WSNs with the already existing approach (i.e. combination of A* and fuzzy approach) for maximizing the lifetime of WSNs. This paper ensures sensed data security by providing authenticity, integrity, confidentiality. So, this approach provides more effective and efficient way for maximizing the lifetime and security of the WSNs.

Author(s):  
SARANYA. S ◽  
GOWRI. V

Recent technological advances have facilitated the widespread use of wireless sensor networks in many applications such as battle field surveillance, environmental observations, biological detection and industrial diagnostics. In wireless sensor networks, sensor nodes are typically power-constrained with limited lifetime, and so it’s necessary to understand however long the network sustains its networking operations. We can enhance the quality of monitoring in wireless sensor networks by increasing the WSNs lifetime. At the same time WSNs are deployed for monitoring in a range of critical domains such as military, healthcare etc. Accordingly, these WSNs are vulnerable to attacks. Now this proposed work concentrate on maximizing the security of WSNs with the already existing approach (i.e. combination of A* and fuzzy approach) for maximizing the lifetime of WSNs. This paper ensures sensed data security by providing authenticity, integrity, confidentiality. So, this approach provides more effective and efficient way for maximizing the lifetime and security of the WSNs.


The fundamental issue is framing the sensor nodes and steering the information from sender node to receiver node in wireless sensor networks (WSN). To resolve this major difficulty, clustering algorithm is one of the accessible methods employed in wireless sensor networks. Still, clustering concept also faces some hurdles while transmitting the data from source to destination node. The sensor node is used to sense the data and the source node helps to convey the information and the intended recipient receives the sensed information. The clustering proposal will choose the cluster head depending on the residual energy and the sensor utility to its cluster members. The cluster heads will have equal cluster number of nodes. The complexity is generated in computing the shortest path and this can be optimized by Dijkstra’s algorithm. The optimization is executed by Dijkstra’s shortest path algorithm that eliminates the delay in packet delivery, energy consumption, lifetime of the packet and hop count while handling the difficulties. The shortest path calculation will improve the quality of service (QoS). QoS is the crucial problem due to loss of energy and resource computation as well as the privacy in wireless sensor networks. The security can be improvised in this projected work. The preventive metrics are discussed to upgrade the QoS facility by civilizing the privacy parameter called as Safe and Efficient Query Processing (SAFEQ) and integrating the extended watchdog algorithm in wireless sensor networks.


2020 ◽  
pp. 1286-1301
Author(s):  
Tata Jagannadha Swamy ◽  
Garimella Rama Murthy

Wireless Sensor Nodes (WSNs) are small in size and have limited energy resources. Recent technological advances have facilitated widespread use of wireless sensor networks in many real world applications. In real life situations WSN has to cover an area or monitor a number of nodes on a plane. Sensor node's coverage range is proportional to their cost, as high cost sensor nodes have higher coverage ranges. The main goal of this paper is to minimize the node placement cost with the help of uniform and non-uniform 2D grid planes. Authors propose a new algorithm for data transformation between strongly connected sensor nodes, based on graph theory.


Author(s):  
Lina M. Pestana Leão de Brito ◽  
Laura M. Rodríguez Peralta

As with many technologies, defense applications have been a driver for research in sensor networks, which started around 1980 due to two important programs of the Defense Advanced Research Projects Agency (DARPA): the distributed sensor networks (DSN) and the sensor information technology (SensIT) (Chong & Kumar, 2003). However, the development of sensor networks requires advances in several areas: sensing, communication, and computing. The explosive growth of the personal communications market has driven the cost of radio devices down and has increased the quality. At the same time, technological advances in wireless communications and electronic devices (such as low-cost, low-power, small, simple yet efficient wireless communication equipment) have enabled the manufacturing of sensor nodes and, consequently, the development of wireless sensor networks (WSNs).


2020 ◽  
Vol 16 (6) ◽  
pp. 155014772092577 ◽  
Author(s):  
Shahwar Ali ◽  
A Humaria ◽  
M Sher Ramzan ◽  
Imran Khan ◽  
Syed M Saqlain ◽  
...  

In wireless sensor networks, the sensors transfer data through radio signals to a remote base station. Sensor nodes are used to sense environmental conditions such as temperature, strain, humidity, sound, vibration, and position. Data security is a major issue in wireless sensor networks since data travel over the naturally exposed wireless channel where malicious attackers may get access to critical information. The sensors in wireless sensor networks are resource-constrained devices whereas the existing data security approaches have complex security mechanisms with high computational and response times affecting the network lifetime. Furthermore, existing systems, such as secure efficient encryption algorithm, use the Diffie–Hellman approach for key generation and exchange; however, Diffie–Hellman is highly vulnerable to the man-in-the-middle attack. This article introduces a data security approach with less computational and response times based on a modified version of Diffie–Hellman. The Diffie–Hellman has been modified to secure it against attacks by generating a hash of each value that is transmitted over the network. The proposed approach has been analyzed for security against various attacks. Furthermore, it has also been analyzed in terms of encryption/decryption time, computation time, and key generation time for different sizes of data. The comparative analysis with the existing approaches shows that the proposed approach performs better in most of the cases.


2008 ◽  
Vol 09 (03) ◽  
pp. 255-276 ◽  
Author(s):  
SAMER SAMARAH ◽  
AZZEDINE BOUKERCHE

Wireless Sensor Networks (WSNs) have proven their success in a variety of applications for monitoring physical and critical environments. However, the streaming nature, limited resources, and the unreliability of wireless communication are among the factors that affect the Quality of Service (QoS) of WSNs. In this paper, we propose a data mining technique to extract behavioral patterns about the sensor nodes during their operation. The behavioral patterns, which we refer to as Chronological Patterns, can be thought of as tutorials that teach about the set of sensors that report on events within a defined time interval and the order in which the events were detected. Chronological Patterns can serve as a helpful tool for predicting behaviors in order to enhance the performance of the WSN and thus improve the overall QoS. The proposed technique consists of: a formal definition of the Chronological Patterns and a new representation structure, which we refer to as Chlorotical Tree (CT), that facilities the mining of these patterns. To report about the performance of the CT, several experiments have been conducted to evaluate the CT using different density factors.


Author(s):  
Ahona Ghosh ◽  
Chiung Ching Ho ◽  
Robert Bestak

Wireless sensor networks consist of unattended small sensor nodes having low energy and low range of communication. It has been observed that if there is any system to periodically start and stop the sensors sensing activities, then it saves some energy, and thus, the network lifetime gets extended. According to the current literature, security and energy efficiency are the two main concerns to improve the quality of service during transmission of data in wireless sensor networks. Machine learning has proved its efficiency in developing efficient processes to handle complex problems in various network aspects. Routing in wireless sensor network is the process of finding the route for transmitting data among different sensor nodes according to the requirement. Machine learning has been used in a broad way for designing energy efficient routing protocols, and this chapter reviews the existing works in the said domain, which can be the guide to someone who wants to explore the area further.


2020 ◽  
Vol 2020 ◽  
pp. 1-21 ◽  
Author(s):  
Adil Hilmani ◽  
Abderrahim Maizate ◽  
Larbi Hassouni

With the increasing number of vehicles, the management of parking spaces in cities is becoming increasingly important in improving the quality of life and combating air pollution. Indeed, finding a parking space at peak times and in congested areas of the population becomes a huge challenge for drivers. To remedy this problem, most modern cities have smart parking. The equipment of these smart parking is mainly based on the implementation of wireless sensor networks (WSN) to monitor, track, and collect real-time information on the occupancy status of each parking space. This information is then made available to drivers who are looking for an available parking space. However, sensor nodes have limitations in terms of energy and communication that affect the performance and quality of the wireless sensor network. Therefore, the design of a self-organization protocol for WSN that minimizes power consumption and maximizes the longevity of the WSN network must be taken into account when implementing and developing a sustainable and viable intelligent parking system. In this paper, we propose a protocol for self-organization of wireless sensor networks (WSN) for the management of parking spaces in outdoor and urban car parks. This protocol is based on building clusters using ZigBee transmission technology for multihop communication. Each sensor node will be installed in the ground of each parking space to monitor its availability by sending the empty or busy state of that space to the gateway using cluster head nodes (CHs). This approach has a robust and efficient self-organizing algorithm that minimizes energy dissipation and increases the lifetime of sensor nodes and the WSN network. The simulation results show that parking management systems in outdoor and urban car parks using the self-organization protocol presented are efficient and sustainable in terms of energy consumption, reliability of data transmission, and the longevity of the WSN network compared to other existing parking systems that use different self-organizing protocols for wireless sensor networks.


Author(s):  
Omar Adil Mahdi ◽  
Yusor Rafid Bahar Al-Mayouf ◽  
Ahmed Basil Ghazi ◽  
Mazin Abed Mohammed ◽  
Ainuddin Wahid Abdul Wahab ◽  
...  

<p>Energy and memory limitations are considerable constraints of sensor nodes in wireless sensor networks (WSNs). The limited energy supplied to network nodes causes WSNs to face crucial functional limitations. Therefore, the problem of limited energy resource on sensor nodes can only be addressed by using them efficiently. In this research work, an energy-balancing routing scheme for in-network data aggregation is presented. This scheme is referred to as Energy-aware and load-Balancing Routing scheme for Data Aggregation (hereinafter referred to as EBR-DA). The EBRDA aims to provide an energy efficient multiple-hop routing to the destination on the basis of the quality of the links between the source and destination. In view of this goal, a link cost function is introduced to assess the quality of the links by considering the new multi-criteria node weight metric, in which energy and load balancing are considered. The node weight is considered in constructing and updating the routing tree to achieve dynamic behavior for event-driven WSNs. The proposed EBR-DA was evaluated and validated by simulation, and the results were compared with those of InFRA and DRINA by using performance metrics for dense static networks.</p>


2014 ◽  
Vol 556-562 ◽  
pp. 6311-6315
Author(s):  
Yong Qing Wang ◽  
Jing Tian Tang ◽  
Xing Po Ma

We study data aggregation for region-based top-k queries in wireless sensor networks, which is one kind of internet of things. Because the energy of sensor nodes is limited and a sensor node will die if it has no energy left, one of the important targets for all protocols in wireless sensor networks is to decrease the energy consumption of the sensor nodes. For a sensor node, communication cost is much more than other kinds of energy cost such as energy cost on computation and data storage. Thus, a very efficient way to decrease the energy cost of the sensor nodes is to decrease the quality of the sensing data that will be transmitted to the base station. In this paper, we use the technique of data aggregation to achieve this goal, and propose an algorithm to construct a novel Data Aggregation Tree (DAT) in the query region. To check the efficiency of DAT, we have made a simulation on OMNET, and the results show that DAT can shrink large quality of data when they are transmitted to the base station, and the life time of the sensor networks can thus be prolonged..


Sign in / Sign up

Export Citation Format

Share Document