BUCKLING BEHAVIOR OF SHORT MULTI-WALLED CARBON NANOTUBES UNDER AXIAL COMPRESSION LOADS

2012 ◽  
Vol 12 (06) ◽  
pp. 1250045 ◽  
Author(s):  
A. H. KORAYEM ◽  
W. H. DUAN ◽  
X. L. ZHAO ◽  
C. M. WANG

We investigate the buckling behaviors of short multi-walled carbon nanotubes (MWCNTs) under axial compression by using molecular mechanics (MM) simulations. The effects of the number of walls, length and chiral angle of MWCNTs on the buckling behaviors are examined. The results show that the buckling behaviors of short MWCNTs are rather different from single walled carbon nanotubes (SWCNTs) and slender MWCNTs. Moreover, it is observed that the buckling strains of short MWCNTs vary inversely proportional to the number of nanotube walls. For slender MWCNTs, the buckling strains fluctuate as the number of walls increase. It increases for beam-like buckling mode, decreases for shell-like buckling mode and is approximately constant for the shell-beam-like buckling mode. The increase in the length of MWCNT has also led to a significant decrease of the buckling strain for short MWCNTs. However, chirality does not have a significant effect on the buckling strain of MWCNTs nor alter the buckling mode of short MWCNTs.

2010 ◽  
Vol 97-101 ◽  
pp. 3749-3752
Author(s):  
Li Jie Chen ◽  
Qi Zhao ◽  
Zun Qun Gong

In this paper, based on the continuum mechanics method, we adopt the three-dimensional finite element (FE) models to study the effects of different defects on buckling behavior of armchair and zigzag single-walled carbon nanotubes (SWCNTs) under axial compression. The variations of the buckling modes and the critical buckling strains with the diameter and the length-diameter ratio of SWCNTs are investigated. The diameters of SWCNTs vary from about 0.2 to 2 nm, and the length-diameter ratios vary from 3 to 30. Two kinds of atom vacancy defects are considered. The calculation results show that the length and the diameter of SWCNTs are relatively significant factors affecting the buckling behavior of SWCNTs. There is an optimal diameter with which the SWCNTs can bear much higher axial compression load than those with other diameters. The defects affect the buckling behavior of SWCNTs obviously when the length-diameter ratio of the nanotube is about less than 8 and the defects studied in this paper can decrease the critical buckling strain by a largest proportion of 41.5%.


2013 ◽  
Vol 652-654 ◽  
pp. 151-154
Author(s):  
Ting Kai Zhao ◽  
Xing Zhao ◽  
Jin Yan ◽  
Li Du ◽  
Tie Hu Li

With the technological progress in the synthesis of multi-walled carbon nanotubes and single-walled carbon nanotubes, more attention was attracted to the synthesis of carbon nanotubes with diameter distribution, ideal length, different chirality and certain orientation. In recent decade, all these factors have been investigated and a number of progresses have been made for the application of carbon nanotubes. The latest researches on the growth of diameter-controlled single-walled carbon nanotubes are reviewed and discussed. The existing problems and challenges of the synthesis processes have been addressed in the future directions.


Sign in / Sign up

Export Citation Format

Share Document