scholarly journals AUTOMATIC ACTIVE CONTOURS PROPAGATION IN A SEQUENCE OF MEDICAL IMAGES

2006 ◽  
Vol 06 (02) ◽  
pp. 267-292 ◽  
Author(s):  
KHALIFA DJEMAL ◽  
WILLIAM PUECH ◽  
BRUNO ROSSETTO

In this paper we present a new algorithm to track an organ in a sequence of medical images in order to achieve a 3D reconstruction. The automatic method that we propose allows the tracking of the external contour of the anatomical organ in all the sequence from one contour initialized by the user on the first image. The required operations for our tracking method are the region-based active contours segmentation. The objects localization with dynamic prediction of displacements is based on the level-set functions and the definition of the region of interest for the robust local estimation of the image model. An application of this method is the 3D reconstruction of abdominal aorta.

1973 ◽  
Vol 28 (10) ◽  
pp. 1668-1675
Author(s):  
J. Gerofi ◽  
H. K. Messerle

Refraction and reflection of a shockwave at a plasma/cold gas interface has been studied using an R.F. preheated section in an electrothermal shock tube. The gas used in the experiment was Argon at initial pressures from 10 to 30 Torr, with initial temperature of 9000 K.A detailed numerical analysis of the refraction event has been undertaken using a method that does not require definition of an effective γ. Methods that do use such a γ are not accurate, except for very weak shocks. Because of short ionization times it has been possible to assume equilibrium behind the various shock waves. Calculations suggest that in the region of interest, reflected and refracted shock velocities depend primarily on initial shock velocity, slightly on initial plasma temperature and very weakly on initial pressure. The analysis covers initial temperatures of 6000 to 12 000 K and initial pressures of 10 to 50 Torr.Calculations and experimental results are presented. These show that a step function discontinuity is a good approximation to the nature of the plasma cold gas interface in this situation.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2962 ◽  
Author(s):  
Santiago González Izard ◽  
Ramiro Sánchez Torres ◽  
Óscar Alonso Plaza ◽  
Juan Antonio Juanes Méndez ◽  
Francisco José García-Peñalvo

The visualization of medical images with advanced techniques, such as augmented reality and virtual reality, represent a breakthrough for medical professionals. In contrast to more traditional visualization tools lacking 3D capabilities, these systems use the three available dimensions. To visualize medical images in 3D, the anatomical areas of interest must be segmented. Currently, manual segmentation, which is the most commonly used technique, and semi-automatic approaches can be time consuming because a doctor is required, making segmentation for each individual case unfeasible. Using new technologies, such as computer vision and artificial intelligence for segmentation algorithms and augmented and virtual reality for visualization techniques implementation, we designed a complete platform to solve this problem and allow medical professionals to work more frequently with anatomical 3D models obtained from medical imaging. As a result, the Nextmed project, due to the different implemented software applications, permits the importation of digital imaging and communication on medicine (dicom) images on a secure cloud platform and the automatic segmentation of certain anatomical structures with new algorithms that improve upon the current research results. A 3D mesh of the segmented structure is then automatically generated that can be printed in 3D or visualized using both augmented and virtual reality, with the designed software systems. The Nextmed project is unique, as it covers the whole process from uploading dicom images to automatic segmentation, 3D reconstruction, 3D visualization, and manipulation using augmented and virtual reality. There are many researches about application of augmented and virtual reality for medical image 3D visualization; however, they are not automated platforms. Although some other anatomical structures can be studied, we focused on one case: a lung study. Analyzing the application of the platform to more than 1000 dicom images and studying the results with medical specialists, we concluded that the installation of this system in hospitals would provide a considerable improvement as a tool for medical image visualization.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
S. N. Acho ◽  
W. I. D. Rae

Variation in signal intensity within mass lesions and missing boundary information are intensity inhomogeneities inherent in digital mammograms. These inhomogeneities render the performance of a deformable contour susceptible to the location of its initial position and may lead to poor segmentation results for these images. We investigate the dependence of shape-based descriptors and mass segmentation areas on initial contour placement with the Chan-Vese segmentation method and compare these results to the active contours with selective local or global segmentation model. For each mass lesion, final contours were obtained by propagation of a proposed initial level set contour and by propagation of a manually drawn contour enclosing the region of interest. Differences in shape-based descriptors were quantified using absolute percentage differences, Euclidean distances, and Bland-Altman analysis. Segmented areas were evaluated with the area overlap measure. Differences were dependent upon the characteristics of the mass margins. Boundary moments presented large percentage differences. Pearson correlation analysis showed statistically significant correlations between shape-based descriptors from both initial locations. In conclusion, boundary moments of digital mass lesions are sensitive to the placement of initial level set contours while shape-based descriptors such as Fourier descriptors, shape convexity, and shape rectangularity exhibit a certain degree of robustness to changes in the location of the initial level set contours for both segmentation algorithms.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4985-4985
Author(s):  
Christophe Roumier ◽  
Olivier Nibourel ◽  
Valérie Soenen ◽  
Céline Villenet ◽  
Sébastien Lignon ◽  
...  

Abstract Among B-CLPD, characterized primarily by morphology and expression of cell surface markers, is is important to identify patients with CD5+ atypical B-CLL that is regarded as clinically more aggressive than typical B-CLL. However these cases are not well defined. To better characterize the genetic lesion observed in atypical B-CLL we have analysed a cohort of 40 patients by CGH microarrays.Study was made on 5 typical B-CLL and on 35 atypical B-CLL patients with either CD20dim or bright expression that do not express cyclin D1. All the patients with atypical B-CLL will be defined as the presence of an absolute B-CD5-positive lymphocytosis > 4 x 109/l and a RMH score < 4. DNA was extracted using QuiAmp kit according to manufacturer recommendations. 2μg of DNA was used in each hybridization experiment. DNA labeling was performed using Cy3dUTP and Cy5 dUTP respectively for control and tumoral sample respectively. CGH-arrays was performed using the 1 Mb Human genome micro-array from “arraygenomics” that contains 3400 BAC clones fully FISH mapped and end sequenced all printed in triplicate. Each experiment was made using two slides in dye swap method. Cy5 and Cy3 fluorescence intensities spot were quantified using Axon Scanner 4100 and Acuity Software. Data were imported into SpectralWare 2.0 software and Normalise Suite, version 2.0, Profiler from Squire lab. Results: Identification of known and previously uncharacterized copy number alterations (CNAs) in the a-B-CLL cells genome was made in all the cases. The CGH profiles revealed that a-B-CLL genome is highly rearranged harbouring large numbers of distinct copy-number aberrations (75 CNAs among 31 chromosomal regions were found). Some of these CNAs are recurrent across different samples, allowing the definition of minimal common regions (MCR) of amplification or deletion. The size of the CNAs was extremely variable from one Bac probe to complete chromosome gains or losses. Specifically, our dataset included the known gains of chromosome 12 (14 cases), and the known deletion at 11q23, 13q14.3, 17p region but also new region of interest as +3p, 3q22 to 3qter, 4pter to 4q35.2, 5p15, 6p25.3 to 6p22, 8q22 to 8q24, 15q15.3 to 15q26, 17q11 to 17qter, +18 and +19 for gains and 1p35,1, 1p33, 2q22.3, 3p26.3 to 3p21.3, 5q34, 6p25.3, 6q16, 6q25.3 to 6q27, 7q31.3 to 7q32.2, 8p23.3 to 8p12, 10q11.2 to 10q21.1, 10q21.3, 10q23.2 to 10q24, 11q22.3 to 11q24.2, 15q14 to 15q21, 16p11.2 to 16q21, 21q22.1 for the deletions.To further corroborate the above finding, we had performed conventional FISH analysis using known probes for del 13q, del 11q, trisomy 12, del 17p and correlate our results with conventional cytogenetic findings when they were available. In all the cases CGH-arrays findings were confirmed by fish analysis or karyotype. The above findings were confirmed also in few cases using the Agilent’s Human Genome CGH Microarray 44K that contains over 40,000 probes. Our first results confirmed BAC arrays results. CGH-arrays appears to be very informative to detect lesion in B-CLPD and show the high frequency of genetic lesions in a-CLL. The biological impact of this lesions by transcriptome analysis on the same sample and the prognosis impact is in progress.


Sign in / Sign up

Export Citation Format

Share Document