ON SOME STANDARD GRADED ALGEBRAS IN MODULAR INVARIANT THEORY

2013 ◽  
Vol 13 (01) ◽  
pp. 1350080
Author(s):  
S. K. PATTANAYAK

For a finite-dimensional representation V of a finite group G over a field K we denote the graded algebra R ≔ ⨁d≥0 Rd; where Rd ≔ ( Sym d∣G∣V*)G. We study the standardness of R for the representations [Formula: see text], [Formula: see text], and [Formula: see text], where Vn denote the n-dimensional indecomposable representation of the cyclic group Cp over the Galois field 𝔽p, for a prime p. We also prove the standardness for the defining representation of all finite linear groups with polynomial rings of invariants. This is motivated by a question of projective normality raised in [S. S. Kannan, S. K. Pattanayak and P. Sardar, Projective normality of finite groups quotients, Proc. Amer. Math. Soc.137(3) (2009) 863–867].

1991 ◽  
Vol 34 (2) ◽  
pp. 224-228
Author(s):  
Morton E. Harris

AbstractLet G be a finite group, let k be a field and let R be a finite dimensional fully G-graded k-algebra. Also let L be a completely reducible R-module and let P be a projective cover of R. We give necessary and sufficient conditions for P|R1 to be a projective cover of L|R1 in Mod (R1). In particular, this happens if and only if L is R1-projective. Some consequences in finite group representation theory are deduced.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Gui-Jun Ding ◽  
Stephen F. King ◽  
Cai-Chang Li ◽  
Ye-Ling Zhou

Abstract We consider for the first time level 7 modular invariant flavour models where the lepton mixing originates from the breaking of modular symmetry and couplings responsible for lepton masses are modular forms. The latter are decomposed into irreducible multiplets of the finite modular group Γ7, which is isomorphic to PSL(2, Z7), the projective special linear group of two dimensional matrices over the finite Galois field of seven elements, containing 168 elements, sometimes written as PSL2(7) or Σ(168). At weight 2, there are 26 linearly independent modular forms, organised into a triplet, a septet and two octets of Γ7. A full list of modular forms up to weight 8 are provided. Assuming the absence of flavons, the simplest modular-invariant models based on Γ7 are constructed, in which neutrinos gain masses via either the Weinberg operator or the type-I seesaw mechanism, and their predictions compared to experiment.


2002 ◽  
Vol 31 (9) ◽  
pp. 513-553 ◽  
Author(s):  
Stanislav Pakuliak ◽  
Sergei Sergeev

We investigate anN-state spin model called quantum relativistic Toda chain and based on the unitary finite-dimensional representations of the Weyl algebra withqbeingNth primitive root of unity. Parameters of the finite-dimensional representation of the local Weyl algebra form the classical discrete integrable system. Nontrivial dynamics of the classical counterpart corresponds to isospectral transformations of the spin system. Similarity operators are constructed with the help of modified Baxter'sQ-operators. The classical counterpart of the modifiedQ-operator for the initial homogeneous spin chain is a Bäcklund transformation. This transformation creates an extra Hirota-type soliton in a parameterization of the chain structure. Special choice of values of solitonic amplitudes yields a degeneration of spin eigenstates, leading to the quantum separation of variables, or the functional Bethe ansatz. A projector to the separated eigenstates is constructed explicitly as a product of modifiedQ-operators.


1966 ◽  
Vol 27 (2) ◽  
pp. 531-542 ◽  
Author(s):  
G. Hochschild ◽  
G. D. Mostow

Let G be a complex analytic group, and let A be the representation space of a finite-dimensional complex analytic representation of G. We consider the cohomology for G in A, such as would be obtained in the usual way from the complex of holomorphic cochains for G in A. Actually, we shall use a more conceptual categorical definition, which is equivalent to the explicit one by cochains. In the context of finite-dimensional representation theory, nothing substantial is lost by assuming that G is a linear group. Under this assumption, it is the main purpose of this paper to relate the holomorphic cohomology of G to Lie algebra cohomology, and to the rational cohomology, in the sense of [1], of algebraic hulls of G. This is accomplished by using the known structure theory for complex analytic linear groups in combination with certain easily established results concerning the cohomology of semidirect products. The main results are Theorem 4.1 (whose hypothesis is always satisfied by a complex analytic linear group) and Theorems 5.1 and 5.2. These last two theorems show that the usual abundantly used connections between complex analytic representations of complex analytic groups and rational representations of algebraic groups extend fully to the superstructure of cohomology.


2018 ◽  
Vol 62 (1) ◽  
pp. 291-304
Author(s):  
Dave Benson ◽  
Zinovy Reichstein

AbstractWe examine situations, where representations of a finite-dimensionalF-algebraAdefined over a separable extension fieldK/F, have a unique minimal field of definition. Here the base fieldFis assumed to be a field of dimension ≼1. In particular,Fcould be a finite field ork(t) ork((t)), wherekis algebraically closed. We show that a unique minimal field of definition exists if (a)K/Fis an algebraic extension or (b)Ais of finite representation type. Moreover, in these situations the minimal field of definition is a finite extension ofF. This is not the case ifAis of infinite representation type orFfails to be of dimension ≼1. As a consequence, we compute the essential dimension of the functor of representations of a finite group, generalizing a theorem of Karpenko, Pevtsova and the second author.


2014 ◽  
Vol 150 (9) ◽  
pp. 1579-1606 ◽  
Author(s):  
Yves Benoist ◽  
Jean-François Quint

AbstractLet $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}G$ be a connected real semisimple Lie group, $V$ be a finite-dimensional representation of $G$ and $\mu $ be a probability measure on $G$ whose support spans a Zariski-dense subgroup. We prove that the set of ergodic $\mu $-stationary probability measures on the projective space $\mathbb{P}(V)$ is in one-to-one correspondence with the set of compact $G$-orbits in $\mathbb{P}(V)$. When $V$ is strongly irreducible, we prove the existence of limits for the empirical measures. We prove related results over local fields as the finiteness of the set of ergodic $\mu $-stationary measures on the flag variety of $G$.


2009 ◽  
Vol 20 (01) ◽  
pp. 45-76
Author(s):  
MAGNUS B. LANDSTAD ◽  
NADIA S. LARSEN

For a Hecke pair (G, H) and a finite-dimensional representation σ of H on Vσ with finite range, we consider a generalized Hecke algebra [Formula: see text], which we study by embedding the given Hecke pair in a Schlichting completion (Gσ, Hσ) that comes equipped with a continuous extension σ of Hσ. There is a (non-full) projection [Formula: see text] such that [Formula: see text] is isomorphic to [Formula: see text]. We study the structure and properties of C*-completions of the generalized Hecke algebra arising from this corner realisation, and via Morita–Fell–Rieffel equivalence, we identify, in some cases explicitly, the resulting proper ideals of [Formula: see text]. By letting σ vary, we can compare these ideals. The main focus is on the case with dim σ = 1 and applications include ax + b-groups and the Heisenberg group.


1979 ◽  
Vol 28 (3) ◽  
pp. 321-324 ◽  
Author(s):  
Gerald H. Cliff

AbstractLet k be an algebraically closed field of characteristic p, and G a finite group. Let M be an indecomposable kG-module with vertex V and source X, and let P be a Sylow p-subgroup of G containing V. Theorem: If dimkX is prime to p and if NG(V) is p-solvable, then the p-part of dimkM equals [P:V]; dimkX is prime to p if V is cyclic.


Sign in / Sign up

Export Citation Format

Share Document