scholarly journals The automorphism group and fixing number of orthogonality graph over a vector space

Author(s):  
Shikun Ou ◽  
Yanfei Tan

Let [Formula: see text] be a field, and [Formula: see text] the [Formula: see text]-dimensional row vector space over [Formula: see text]. The orthogonality graph [Formula: see text] of [Formula: see text] is an undirected simple graph which has [Formula: see text] as its vertex set, and for distinct [Formula: see text], [Formula: see text] if and only if [Formula: see text], where [Formula: see text] is the transpose of [Formula: see text]. When [Formula: see text] is finite, it is shown that any automorphism of [Formula: see text] can be decomposed into the product of a row-orthogonal automorphism and either a permutation automorphism or a field automorphism; moreover, the fixing number and metric dimension of [Formula: see text] are considered.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Shikun Ou ◽  
Yanqi Fan ◽  
Qunfang Li

In this paper, we introduce an undirected simple graph, called the zero component graph on finite-dimensional vector spaces. It is shown that two finite-dimensional vector spaces are isomorphic if and only if their zero component graphs are isomorphic, and any automorphism of a zero component graph can be uniquely decomposed into the product of a permutation automorphism and a regular automorphism. Moreover, we find the dominating number, as well as the independent number, and characterize the minimum independent dominating sets, maximum independent sets, and planarity of the graph. In the case that base fields are finite, we calculate the fixing number and metric dimension of the zero component graphs and determine vector spaces whose zero component graphs are Hamiltonian.


10.37236/9873 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Hajime Tanaka ◽  
Tao Wang

The Terwilliger algebra $T(x)$ of a finite connected simple graph $\Gamma$ with respect to a vertex $x$ is the complex semisimple matrix algebra generated by the adjacency matrix $A$ of $\Gamma$ and the diagonal matrices $E_i^*(x)=\operatorname{diag}(v_i)$ $(i=0,1,2,\dots)$, where $v_i$ denotes the characteristic vector of the set of vertices at distance $i$ from $x$. The twisted Grassmann graph $\tilde{J}_q(2D+1,D)$ discovered by Van Dam and Koolen in 2005 has two orbits of the automorphism group on its vertex set, and it is known that one of the orbits has the property that $T(x)$ is thin whenever $x$ is chosen from it, i.e., every irreducible $T(x)$-module $W$ satisfies $\dim E_i^*(x)W\leqslant 1$ for all $i$. In this paper, we determine all the irreducible $T(x)$-modules of $\tilde{J}_q(2D+1,D)$ for this "thin" case.


Author(s):  
K. Wahid ◽  
A. Das ◽  
A. Rani ◽  
S. Amanat ◽  
M. Imran ◽  
...  

There are several approaches to lower the complexity of huge networks. One of the key notions is that of twin nodes, exhibiting the same connection pattern to the rest of the network. We extend this idea by defining a twin preserving spanning subgraph (TPS-subgraph) of a simple graph as a tool to compute certain graph related invariants which are preserved by the subgraph. We discuss how these subgraphs preserve some distance based parameters of the simple graph. We introduce a sub-skeleton graph on a vector space and examine its basic properties. The sub-skeleton graph is a TPS-subgraph of the non-zero component graph defined over a vector space. We prove that some parameters like the metric-dimension are preserved by the sub-skeleton graph.


2019 ◽  
Vol 17 (1) ◽  
pp. 1303-1309 ◽  
Author(s):  
Ghulam Abbas ◽  
Usman Ali ◽  
Mobeen Munir ◽  
Syed Ahtsham Ul Haq Bokhary ◽  
Shin Min Kang

Abstract Classical applications of resolving sets and metric dimension can be observed in robot navigation, networking and pharmacy. In the present article, a formula for computing the metric dimension of a simple graph wihtout singleton twins is given. A sufficient condition for the graph to have the exchange property for resolving sets is found. Consequently, every minimal resolving set in the graph forms a basis for a matriod in the context of independence defined by Boutin [Determining sets, resolving set and the exchange property, Graphs Combin., 2009, 25, 789-806]. Also, a new way to define a matroid on finite ground is deduced. It is proved that the matroid is strongly base orderable and hence satisfies the conjecture of White [An unique exchange property for bases, Linear Algebra Appl., 1980, 31, 81-91]. As an application, it is shown that the power graphs of some finite groups can define a matroid. Moreover, we also compute the metric dimension of the power graphs of dihedral groups.


2019 ◽  
Vol 19 (05) ◽  
pp. 2050086 ◽  
Author(s):  
T. Tamizh Chelvam ◽  
K. Prabha Ananthi

Let [Formula: see text] be a k-dimensional vector space over a finite field [Formula: see text] with a basis [Formula: see text]. The nonzero component graph of [Formula: see text], denoted by [Formula: see text], is a simple undirected graph with vertex set as nonzero vectors of [Formula: see text] such that there is an edge between two distinct vertices [Formula: see text] if and only if there exists at least one [Formula: see text] along which both [Formula: see text] and [Formula: see text] have nonzero scalars. In this paper, we find the vertex connectivity and girth of [Formula: see text]. We also characterize all vector spaces [Formula: see text] for which [Formula: see text] has genus either 0 or 1 or 2.


2013 ◽  
Vol 11 (10) ◽  
Author(s):  
Ivan Arzhantsev ◽  
Ivan Bazhov

AbstractLet X be an affine toric variety. The total coordinates on X provide a canonical presentation $$\bar X \to X$$ of X as a quotient of a vector space $$\bar X$$ by a linear action of a quasitorus. We prove that the orbits of the connected component of the automorphism group Aut(X) on X coincide with the Luna strata defined by the canonical quotient presentation.


10.37236/2582 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Tamás Héger ◽  
Marcella Takáts

In a graph $\Gamma=(V,E)$ a vertex $v$ is resolved by a vertex-set $S=\{v_1,\ldots,v_n\}$ if its (ordered) distance list with respect to $S$, $(d(v,v_1),\ldots,d(v,v_n))$, is unique. A set $A\subset V$ is resolved by $S$ if all its elements are resolved by $S$. $S$ is a resolving set in $\Gamma$ if it resolves $V$. The metric dimension of $\Gamma$ is the size of the smallest resolving set in it. In a bipartite graph a semi-resolving set is a set of vertices in one of the vertex classes that resolves the other class.We show that the metric dimension of the incidence graph of a finite projective plane of order $q\geq 23$ is $4q-4$, and describe all resolving sets of that size. Let $\tau_2$ denote the size of the smallest double blocking set in PG$(2,q)$, the Desarguesian projective plane of order $q$. We prove that for a semi-resolving set $S$ in the incidence graph of PG$(2,q)$, $|S|\geq \min \{2q+q/4-3, \tau_2-2\}$ holds. In particular, if $q\geq9$ is a square, then the smallest semi-resolving set in PG$(2,q)$ has size $2q+2\sqrt{q}$. As a corollary, we get that a blocking semioval in PG$(2, q)$, $q\geq 4$, has at least $9q/4-3$ points. A corrigendum was added to this paper on March 3, 2017.


Author(s):  
Qun Liu ◽  
Jiabao Liu

Let G[F,Vk, Huv] be the graph with k pockets, where F is a simple graph of order n ≥ 1,Vk= {v1,v2,··· ,vk} is a subset of the vertex set of F and Hvis a simple graph of order m ≥ 2,v is a specified vertex of Hv. Also let G[F,Ek, Huv] be the graph with k edge pockets, where F is a simple graph of order n ≥ 2, Ek= {e1,e2,···ek} is a subset of the edge set of F and Huvis a simple graph of order m ≥ 3, uv is a specified edge of Huvsuch that Huv− u is isomorphic to Huv− v. In this paper, we derive closed-form formulas for resistance distance and Kirchhoff index of G[F,Vk, Hv] and G[F,Ek, Huv] in terms of the resistance distance and Kirchhoff index F, Hv and F, Huv, respectively.


Author(s):  
Kijung Kim

Let $G$ be a finite simple graph with vertex set $V(G)$ and edge set $E(G)$. A function $f : V(G) \rightarrow \mathcal{P}(\{1, 2, \dotsc, k\})$ is a \textit{$k$-rainbow dominating function} on $G$ if for each vertex $v \in V(G)$ for which $f(v)= \emptyset$, it holds that $\bigcup_{u \in N(v)}f(u) = \{1, 2, \dotsc, k\}$. The weight of a $k$-rainbow dominating function is the value $\sum_{v \in V(G)}|f(v)|$. The \textit{$k$-rainbow domination number} $\gamma_{rk}(G)$ is the minimum weight of a $k$-rainbow dominating function on $G$. In this paper, we initiate the study of $k$-rainbow domination numbers in middle graphs. We define the concept of a middle $k$-rainbow dominating function, obtain some bounds related to it and determine the middle $3$-rainbow domination number of some classes of graphs. We also provide upper and lower bounds for the middle $3$-rainbow domination number of trees in terms of the matching number. In addition, we determine the $3$-rainbow domatic number for the middle graph of paths and cycles.


Author(s):  
Mahsa Mirzargar

Let G be a nite group. The power graph P(G) of a group G is the graphwhose vertex set is the group elements and two elements are adjacent if one is a power of the other. The commuting graph \Delta(G) of a group G, is the graph whose vertices are the group elements, two of them joined if they commute. When the vertex set is G-Z(G), this graph is denoted by \Gamma(G). Since the results based on the automorphism group of these kinds of graphs are so sporadic, in this paper, we give a survey of all results on the automorphism group of power graphs and commuting graphs obtained in the literature.


Sign in / Sign up

Export Citation Format

Share Document