SURVEILLANCE OF DIABETES PREVALENCE RATE THROUGH THE DEVELOPMENT OF A MARKOV-BASED CONTROL CHART

2012 ◽  
Vol 12 (04) ◽  
pp. 1250083
Author(s):  
PERSHANG DOKOUHAKI ◽  
RASSOUL NOOROSSANA

In the field of statistical process control (SPC), usually two issues are addressed; the variables and the attribute quality characteristics control charting. Focusing on discrete data generated from a process to be monitored, attributes control charts would be useful. The discrete data could be classified into two categories; the independent and auto-correlated data. Regarding the independence in the sequence of discrete data, the typical Shewhart-based control charts, such as p-chart and np-chart would be effective enough to monitor the related process. But considering auto-correlation in the sequence of the data, such control charts would not workanymore. In this paper, considering the auto-correlated sequence of X1, X2,…, Xt,… as the sequence of zeros or ones, we have developed a control chart based on a two-state Markov model. This control chart is compared with the previously developed charts in terms of the average number of observations (ANOS) measure. In addition, a case study related to the diabetic people is investigated to demonstrate the applicability and high performance of the developed chart.

Information ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 312 ◽  
Author(s):  
Muhammad Zahir Khan ◽  
Muhammad Farid Khan ◽  
Muhammad Aslam ◽  
Seyed Taghi Akhavan Niaki ◽  
Abdur Razzaque Mughal

Conventional control charts are one of the most important techniques in statistical process control which are used to assess the performance of processes to see whether they are in- or out-of-control. As traditional control charts deal with crisp data, they are not suitable to study unclear, vague, and fuzzy data. In many real-world applications, however, the data to be used in a control charting method are not crisp since they are approximated due to environmental uncertainties and systematic ambiguities involved in the systems under investigation. In these situations, fuzzy numbers and linguistic variables are used to grab such uncertainties. That is why the use of a fuzzy control chart, in which fuzzy data are used, is justified. As an exponentially weighted moving average (EWMA) scheme is usually used to detect small shifts, in this paper a fuzzy EWMA (F-EWMA) control chart is proposed to detect small shifts in the process mean when fuzzy data are available. The application of the newly developed fuzzy control chart is illustrated using real-life data.


2014 ◽  
Vol 31 (7) ◽  
pp. 811-821 ◽  
Author(s):  
Soroush Avakh Darestani ◽  
Azam Moradi Tadi ◽  
Somayeh Taheri ◽  
Maryam Raeiszadeh

Purpose – Shewhart's control charts are the most important statistical process control tools that play a role in inspecting and producing quality control. The purpose of this paper is to investigate the attributes of fuzzy U control chart. Design/methodology/approach – If the data were uncertain, they were converted into trapezoidal fuzzy number and the fuzzy upper and lower control limits were trapezoidal fuzzy number calculated using fuzzy mode approach. The result was grouped into four categories (in control, out of control, rather in control, rather out of control). Finally, a case study was presented and the method coding was done in MATLAB software using design U control chart; then, the results were verified. Findings – The definition of fuzzy numbers for each type of defect sensitivity and the unit can be classified into four groups: in-control and out-of-control, rather in-control and rather out-of-control which represent the actual quality of the products. It can be concluded that fuzzy control chart is more sensitive on recognition out of control patterns. Originality/value – This paper studies the use of control charts, specifically the attributes of a fuzzy U control chart, for monitoring defects in the format of a case study.


2013 ◽  
Vol 845 ◽  
pp. 696-700
Author(s):  
Razieh Haghighati ◽  
Adnan Hassan

Traditional statistical process control (SPC) charting techniques were developed to monitor process status and helping identify assignable causes. Unnatural patterns in the process are recognized by means of control chart pattern recognition (CCPR) techniques. There are a broad set of studies in CCPR domain, however, given the growing doubts concerning the performance of control charts in presence of constrained data, this area has been overlooked in the literature. This paper, reports a preliminary work to develop a scheme for fault tolerant CCPR that is capable of (i) detecting of constrained data that is sampled in a misaligned uneven fashion and/or be partly lost or unavailable and (ii) accommodating the system in order to improve the reliability of recognition.


Author(s):  
Hourieh Foroutan ◽  
Amirhossein Amiri ◽  
Reza Kamranrad

In most statistical process control (SPC) applications, quality of a process or product is monitored by univariate or multivariate control charts. However, sometimes a functional relationship between a response variable and one or more explanatory variables is established and monitored over time. This relationship is called “profile” in SPC literature. In this paper, we specifically consider processes with compositional data responses, including multivariate positive observations summing to one. The relationship between compositional data responses and explanatory variables is modeled by a Dirichlet regression profile. We develop a monitoring procedure based on likelihood ratio test (lrt) for Phase I monitoring of Dirichlet regression profiles. Then, we compare the performance of the proposed method with the best method in the literature in terms of probability of signal. The results of simulation studies show that the proposed control chart has better performance in Phase I monitoring than the competing control chart. Moreover, the proposed method is able to estimate the real time of a change as well. The performance of this feature is also investigated through simulation runs which show the satisfactory performance. Finally, the application of the proposed method is illustrated based on a real case in comparison with the existing method.


2015 ◽  
Vol 35 (6) ◽  
pp. 1079-1092 ◽  
Author(s):  
Murilo A. Voltarelli ◽  
Rouverson P. da Silva ◽  
Cristiano Zerbato ◽  
Carla S. S. Paixão ◽  
Tiago de O. Tavares

ABSTRACT Statistical process control in mechanized farming is a new way to assess operation quality. In this sense, we aimed to compare three statistical process control tools applied to losses in sugarcane mechanical harvesting to determine the best control chart template for this quality indicator. Losses were daily monitored in farms located within Triângulo Mineiro region, in Minas Gerais state, Brazil. They were carried over a period of 70 days in the 2014 harvest. At the end of the evaluation period, 194 samples were collected in total for each type of loss. The control charts used were individual values chart, moving average and exponentially weighted moving average. The quality indicators assessed during sugarcane harvest were the following loss types: full grinding wheel, stumps, fixed piece, whole cane, chips, loose piece and total losses. The control chart of individual values is the best option for monitoring losses in sugarcane mechanical harvesting, as it is of easier result interpretation, in comparison to the others.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1838
Author(s):  
Muhammad Ahsan ◽  
Muhammad Mashuri ◽  
Wibawati ◽  
Hidayatul Khusna ◽  
Muhammad Hisyam Lee

The need for a control chart that can visualize and recognize the symmetric or asymmetric pattern of the monitoring process with more than one type of quality characteristic is a necessity in the era of Industry 4.0. In the past, the control charts were only developed to monitor one kind of quality characteristic. Several control charts were created to deal with this problem. However, there are some problems and drawbacks to the conventional mixed charts. In this study, another approach is used to monitor mixed quality characteristics by applying the Kernel Principal Component Analyisis (KPCA) method. Using the Hotelling’s T2 statistic, the kernel PCA mix chart is proposed to simultaneously monitor the variable and attribute quality characteristics. Due to its ability to estimate the asymmetric pattern of the mixed process, the kernel density estimation (KDE) used in the proposed chart has successfully estimated the control limits that produce ARL0 at about 370 for α=0.00273. Through several experiments based on the proportion of the attribute characteristics and kernel functions, the proposed chart demonstrates better performance in detecting outlier and shift in the process. When it is applied to monitor the synthetic data, the proposed chart can detect the shift accurately. Additionally, the proposed chart outperforms the performance of the conventional mixed chart based on PCA mix by producing lower false alarm with more accurate detection of out of control processes.


Author(s):  
Somchart Thepvongs ◽  
Brian M. Kleiner

Consistent with the precepts of total quality control and total quality management, there has been a resource shift from incoming and outgoing inspection processes to statistical quality control of processes. Furthermore, process control operators are responsible for their own quality, necessitating the in-process inspection of components. This study treated the statistical process control task of “searching” control charts for out-of-control conditions as an inspection task and applied the Theory of Signal Detection to better understand this behavior and improve performance. Twelve subjects participated in a research study to examine how the portrayal of control chart information affected signal detection theory measures. The type of display did not have a significant effect on the sensitivity and response criterion of subjects. These results are discussed in terms of the applicability of Signal Detection Theory in control chart decision making as well as implications on display design.


2014 ◽  
Vol 700 ◽  
pp. 549-552
Author(s):  
Shao Jie Hou ◽  
Xian Zun Meng ◽  
Yu Wei Zhang

The T2statistic is one important indicator of statistical process control theory to identify anomalies of the multivariate industrial process. In the research field of the coal gas pre-drainage process control, previous achievements mainly based on the univariate control chart, which leaded to huge workload and facilitated some human errors. Against these problems, a more comprehensive and easy-to-use method based on the T2statistic was proposed. First at all, the basic thought and the principle of T2control chart was elaborated. Secondly, the data structure and data samples were provided after their principle component analysis. Finally, the multivariate control chart of coal gas pre-drainage process was established. Results show that the proposed anomaly identification method can integrate dozen of univariate control charts into one. Then technicians needn’t deal with many control charts in the same time and many human errors can be avoided.


2015 ◽  
Vol 740 ◽  
pp. 706-713
Author(s):  
Jian Guo Yang ◽  
Lan Xu ◽  
Zhi Jun Lu ◽  
Qian Xiang ◽  
Bin Liu ◽  
...  

Demands of automatic recognition of abnormal patterns in control charts have been increasing nowadays in manufacturing process. Control chart pattern recognition is an important statistical process control tool used to determine whether a process is run in its intended range or not and eliminate the potential attribution factors as far as possible according to the abnormal condition shown in the control chart. This paper uses the time domain features as input vector and genetic algorithm to obtain the optimal parameters of SVM in a self-adapted manner. Design anomaly detection model for dynamic process is made to realize control chart pattern recognition under the complex condition. The experimental results show that the proposed approach method has higher detection accuracy and stronger generalization ability than other methods, so it is more suitable for quality control in production field.


Sign in / Sign up

Export Citation Format

Share Document