COMPARATIVE EVALUATION OF THE MECHANICAL PROPERTIES OF RESORBABLE AND TITANIUM MINIPLATES USED FOR FIXATION OF MANDIBULAR CONDYLE FRACTURES

2015 ◽  
Vol 15 (02) ◽  
pp. 1540032 ◽  
Author(s):  
EROL CANSIZ ◽  
SUZAN CANSEL DOGRU ◽  
YUNUS ZIYA ARSLAN

In this paper, comparative evaluation of the mechanical properties of resorbable and titanium miniplates, which are used for the fixation of the mandibular condyle fractures, was carried out using finite element analysis (FEA). To do so, first two-dimensional (2D) computed tomography (CT) images of mandibles recorded from 10 adult patients were converted into three-dimensional (3D) solid body models. Then these models were transferred to the finite element software. In the finite element stage of the study, a condyle fracture was created onto the mandible and double-titanium and double-resorbable miniplates were separately fixed to the mandible surface such that the fractured sites to be firmly attached. Stress distribution over the plates and interfragmentary displacements between adjacent surfaces, which stem from the clenching force applying to the mandible, were calculated using FEA. It was observed from the results that maximum tensile stresses occurred in the titanium miniplates were significantly higher than those obtained from resorbable miniplates (p < 0.01). Higher maximum displacements between fractured surfaces were observed in the case of resorbable plate systems (p < 0.01). Maximum stress and displacement values obtained from both titanium and resorbable plate systems were under clinically acceptable limits. According to results, resorbable plates showed a similar reliability with titanium miniplates in terms of withstanding various stress and strain deformations.

2011 ◽  
Vol 291-294 ◽  
pp. 3282-3286 ◽  
Author(s):  
Jiang Wei Wu ◽  
Peng Wang

In port crane industry, the surface hardening technique is widely used in order to improve the strength of wheel. But the hardening depth is chosen only by according to the experience, and the effect of different hardened depths is not studied theoretically. In this paper, the contact stresses in wheel with different hardening depth have been analyzed by applying three-dimensional finite element model. Based on this model, the ANSYS10.0 finite element software is used. The elastic wheel is used to verify the numerical results with the Hertz’s theory. Three different hardening depths, namely 10mm, 25mm and whole hardened wheel, under three different vertical loads were applied. The effect of hardening depth of a surface hardened wheel is discussed by comparing the contact stresses and contact areas from the numerical results.


2013 ◽  
Vol 644 ◽  
pp. 358-361
Author(s):  
Dong Yu Ji

This paper adopts general finite element software to carry out three-dimensional finite element simulation analysis for Huizeli reinforced concrete rectangular-sectioned aqueduct. Considering four combination cases in aqueduct’s construction and operating process, researching variation laws of the aqueduct’s stress and displacement. Analysis results show that design scheme of Huizeli reinforced concrete rectangular-sectioned aqueduct is reasonable, it can meet design requirements. Analysis results provide some theory references for design of reinforced concrete rectangular-sectioned aqueduct.


2011 ◽  
Vol 368-373 ◽  
pp. 3052-3056
Author(s):  
Wei Jun Yang ◽  
Yong Da Yang

New full hall scaffolds with pulley-clip style formwork support system is adopted in the concert hall of Changsha. This paper presents the concept of the complete equivalent initial imperfection according to the characteristics of too many influential factors on the high formwork supporting frame,then makes the complete equivalent initial imperfectione equivalent to assumed equivalent horizontal load in order to ensure the safety of the frame. At the same time, it gets a three-dimensional model by the general finite element software ANSYS 10.0. Based on the results of experiment and finite element analysis, it gets the recommended value of assumed equivalent horizontal load. The study on the high formwork supporting frame with pulley-clip style provides some reference for other similar projects.


Author(s):  
Liping Wan ◽  
Wangping Dong

Abstract Ratcheting assessment by elastic-plastic stress analysis is presented in ASME VIII-2, paragraph 5.5.7. There are three criteria. The first one is strict in engineering design. It’s hard for most of structures to satisfy it. If the plastic strain in the structure is zero, it means that the material is not fully utilized and maybe the structure is unreasonable. Therefore, the second and third criteria are used much more. The first one and the third one can be observed directly and judged accurately by the finite element analysis results. The second one demands an elastic core in the primary-load-bearing boundary. It could be easily observed when the structure is axisymmetric, but hard to judge in the 3D structure. Okamoto in Committee on Three Dimensional Finite Element Stress Evaluation (C-TDF) has studied two thermal stress ratchet criteria: evaluating variations in the plastic strain increments and evaluating variations in the elastic core region, which can accurately assess ratcheting. Recent years, based on the criteria above, more researches have been performed by engineers not only from C-TDF but from all over the world. In this work, several two-dimensional structures and three-dimensional structures under particular load and displacement boundaries are performed by using finite element software ANSYS, aiming to compare the similarities and differences between the criteria in ASME VIII-2, 5.5.7.2 and those given by C-TDF. The assessment of these structures presented in this work will help engineers understand the realization of the criteria and methods in engineering design, especially how to utilize the results from ANSYS.


2018 ◽  
Vol 10 (12) ◽  
pp. 4538 ◽  
Author(s):  
Yeou-Fong Li ◽  
Habib Meda ◽  
Walter Chen

The aim of this paper was to find an optimal stiffener configuration of thin-wall tubular panels made by glass fiber reinforced polymer (GFRP) composite material, which is a low carbon emission, low life cycle cost, and sustainable material. Finite-element analysis (FEA) was used to investigate the flexural and torsional stiffness of various internally stiffened sections of thin-wall GFRP decks. These decks consist of internally stiffened tubular profiles laid side by side and bonded together with epoxy to ensure the panel acts as an assembly. Three-dimensional models of the seven proposed decks were assembled with tubular profiles of different stiffener patterns. First, the non-stiffened tube profile was tested experimentally to validate the parameters used in the subsequent numerical analysis. Then, the finite element software, ANSYS, was used to simulate the flexural and torsional behavior of the decks with different stiffener patterns under bending and torsional loads. The decks with stiffener patterns such as “O” type, “V” type, and “D” type were found to be the most effective in bending. For torsion, there was a distinct tendency for deck panels with closed shaped stiffener patterns to perform better than their counterparts. Overall, the “O” type deck panel was an optimal stiffener configuration.


2020 ◽  
Vol 10 (4) ◽  
pp. 1545
Author(s):  
Zongyuan Zhang ◽  
Hongyuan Fang ◽  
Bin Li ◽  
Fuming Wang

Concrete pipes are the most widely used municipal drainage pipes in China. When concrete pipes fall into years of disrepair, numerous problems appear. As one of the most common problems of concrete pipes, cracks impact on the deterioration of mechanical properties of pipes, which cannot be ignored. In the current work, normal concrete pipes and those with pre-existing cracks are tested on a full scale under an external compressive load. The effects of the length, depth, and location of cracks on the bearing capacity and mechanical properties of the concrete pipes are quantitatively analyzed. Based on the full-scale tests, three-dimensional finite element models of normal and cracked concrete pipes are developed, and the measured results are compared with the data of the finite element analysis. It is clear that the test measurements are in good agreement with the simulation results; the bearing capacity of a concrete pipe is inversely proportional to the length and depth of the crack, and the maximum circumferential strain of the pipe occurs at the location of the crack. The strain of the concrete pipe also reveals three stages of elasticity, plasticity, and failure as the external load rises. Finally, when the load series reaches the limit of the failure load of the concrete pipe with pre-existing cracks, the pipe breaks along the crack position.


2013 ◽  
Vol 421 ◽  
pp. 747-750
Author(s):  
Meng Sha Liu ◽  
Ying Huang ◽  
Jin San Ju

In this paper, a three-dimensional model of a steel sculpture was analyzed by using the finite element software ANSYS. The structural static response were achieved respectively under gravity load, ice load and wind load based on wind tunnel tests with the dynamic response under earthquake action. Besides, the structural parameters such as strength and stiffness under different conditions were also got. It is hoped that the analysis of ultrahigh steel sculpture will offer some technical support for practical engineering.


Sign in / Sign up

Export Citation Format

Share Document