FACILE SYNTHESIS OF COLLOIDAL PbS QUANTUM DOTS

2012 ◽  
Vol 11 (06) ◽  
pp. 1240041
Author(s):  
CHAO LIU ◽  
YANG JIANG ◽  
JIAN HUANG ◽  
HONGYAN DUAN

Lead sulfide ( PbS ) quantum dots (QDs) capped with oleic acid and oleic amine were synthesized by using safe and innocuous sulfur powder as S source instead of the bis (trimethylsilyl) sulfide ((TMS)2S). QDs with size distribution from 20 nm to 3 nm were gained by controlling the experiment parameters such as heating temperature, capping agents and the growth time. The morphology and crystal structure of the as-prepared PbS QDs were characterized by (high-resolution) transmission electron microscopy (HR-TEM) images and powder X-ray diffraction (XRD). This method may offer a new route to synthesize PbS QDs for photovoltaic devices.

2001 ◽  
Vol 16 (9) ◽  
pp. 2572-2578 ◽  
Author(s):  
R. Erce-Montilla ◽  
M. PiÑero ◽  
N.de la Rosa-Fox ◽  
A. Santos ◽  
L. Esquivias

Semiconductor PbS quantum dots doped-SiO2 organically modified silicate (ormosil) gels were synthesised via sol-gel by using high-power ultrasounds (sonogel). The effect of PbS crystal concentration and the addition of (3-mercaptopropyl)trimethoxysilane acting as surface capping agent (SCA) were investigated. By adjustment of the SCA to lead ratio, PbS nanoparticles of different sizes and morphologies were obtained. Textural parameters were calculated from N2 physisorption isotherms. The PbS galena phase was identified by x-ray diffraction, the crystal size by high-resolution transmission electron microscopy, and the exciton confinement by ultraviolet–visible–near-infrared spectrophotometry. Crystallite mean sizes of spheres and cubes ranging from 6.5 to 10.5 nm and needles 7-nm wide and 15–20 nm long, for different PbS and SCA concentrations, were obtained. These results differ from those predicted by the effective mass approximation corroborating the band gap modifications in the smallest nanocrystals. The method allows the control of the crystal size and improves the stabilization of the PbS nanocrystals.


MRS Advances ◽  
2017 ◽  
Vol 2 (15) ◽  
pp. 841-846 ◽  
Author(s):  
José Maria C. da Silva Filho ◽  
Victor A. Ermakov ◽  
Luiz G. Bonato ◽  
Ana F. Nogueira ◽  
Francisco C. Marques

ABSTRACTWe show that superlattice (SL) of PbS quantum dots (QD) can be easily prepared by drop casting of colloidal QD solution onto glass substrate and the ordering level can be controlled by the substrate temperature. A QD solution was dropped on glass and dried at 25, 40, 70 and 100°C resulting in formation of different SL structures. X-ray diffractograms (XRD) of deposited films show a set of sharp and intense peaks that are higher order satellites of a unique peak at 1.8 degrees (two theta), which corresponds, using the Bragg’s Law, to an interplanar spacing of 5.3 nm. The mean particles diameter, calculated through the broadening of the (111) peak of PbS using the Scherrer’s formula, were in agreement with the interplanar spacing. Transmission electron microscopy (TEM) measurements were also used to study the SL structure, which showed mainly a face centered cubic (FCC) arrangement of the QD. The photoluminescence (PL) spectrum of QD in the SL showed a shift toward lower energy compared to one in solution. It can be attributed to the fluorescence resonant energy transfer (FRET) between neighbors QD´s. Moreover, we observed greater redshift of PL peak for film with lower drying temperature, suggesting that it has a more organized structure.


Author(s):  
Nguyen Ca ◽  
N. D Vinh ◽  
Phan Van Do ◽  
N. T. Hien ◽  
Xuan Hoa Vu ◽  
...  

Tb3+-doped ZnSe quantum dots (QDs) with Tb content in the range of 0.5 - 7% were successfully synthesized by a wet chemical method. X-ray diffraction (XRD) and transmission electron microscopy...


2019 ◽  
Vol 43 (3-4) ◽  
pp. 135-139
Author(s):  
Pegah Farokhian ◽  
Manouchehr Mamaghani ◽  
Nosrat Ollah Mahmoodi ◽  
Khalil Tabatabaeian ◽  
Abdollah Fallah Shojaie

An efficient protocol for the facile synthesis of a series of pyrido[2,3- d]pyrimidine derivatives has been developed applying Fe3O4–ZnO–NH2–PW12O40 nanocatalyst in water. This novel method has the benefits of operational simplicity, green aspects by avoiding toxic solvents and high to excellent yields of products. Fe3O4–ZnO–NH2–PW12O40 was synthesized and characterized by Fourier transform infrared, X-ray diffraction, vibrating sample magnetometer, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy analyses. The nanocatalyst is readily isolated and recovered from the reaction mixture by an external magnet.


CrystEngComm ◽  
2020 ◽  
Vol 22 (21) ◽  
pp. 3644-3655
Author(s):  
Stefan Neumann ◽  
Christina Menter ◽  
Ahmed Salaheldin Mahmoud ◽  
Doris Segets ◽  
David Rafaja

Capability of TEM and XRD to reveal scale-bridging information about the microstructure of non-monodisperse quantum dots is illustrated on the CdSe quantum dots synthesized using an automated hot-injection method.


Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 999
Author(s):  
Yi-An Chen ◽  
Kuo-Hsien Chou ◽  
Yi-Yang Kuo ◽  
Cheng-Ye Wu ◽  
Po-Wen Hsiao ◽  
...  

To the best of our knowledge, this report presents, for the first time, the schematic of the possible chemical reaction for a one-pot synthesis of Zn0.5Cd0.5Se alloy quantum dots (QDs) in the presence of low/high oleylamine (OLA) contents. For high OLA contents, high-resolution transmission electron microscopy (HRTEM) results showed that the average size of Zn0.5Cd0.5Se increases significantly from 4 to 9 nm with an increasing OLA content from 4 to 10 mL. First, [Zn(OAc)2]–OLA complex can be formed by a reaction between Zn(OAc)2 and OLA. Then, Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) data confirmed that ZnO is formed by thermal decomposition of the [Zn(OAc)2]–OLA complex. The results indicated that ZnO grew on the Zn0.5Cd0.5Se surface, thus increasing the particle size. For low OLA contents, HRTEM images were used to estimate the average sizes of the Zn0.5Cd0.5Se alloy QDs, which were approximately 8, 6, and 4 nm with OLA loadings of 0, 2, and 4 mL, respectively. We found that Zn(OAc)2 and OLA could form a [Zn(OAc)2]–OLA complex, which inhibited the growth of the Zn0.5Cd0.5Se alloy QDs, due to the decreasing reaction between Zn(oleic acid)2 and Se2−, which led to a decrease in particle size.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
H. Letifi ◽  
Y. Litaiem ◽  
D. Dridi ◽  
S. Ammar ◽  
R. Chtourou

In this paper, we have reported a novel photocatalytic study of vanadium-doped SnO2 nanoparticles (SnO2: V NPs) in rhodamine B degradation. These NPs have been prepared with vanadium concentrations varying from 0% to 4% via the coprecipitation method. Structural, morphological, and optical properties of the prepared nanoparticles have been investigated by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscope (TEM), and UV-Vis and photoluminescence (PL) spectroscopy. Structural properties showed that both undoped and SnO2: V NPs exhibited the tetragonal structure, and the average crystal size has been decreased from 20 nm to 10 nm with the increasing doping level of vanadium. Optical studies showed that the absorption edge of SnO2: V NPs showed a redshift with the increasing vanadium concentration. This redshift leads to the decrease in the optical band gap from 3.25 eV to 2.55 eV. A quenching in luminescence intensity has been observed in SnO2: V NPs, as compared to the undoped sample. Rhodamine B dye (RhB) has been used to study the photocatalytic degradation of all synthesized NPs. As compared to undoped SnO2 NPs, the photocatalytic activity of SnO2: V NPs has been improved. RhB dye was considerably degraded by 95% within 150 min over on the SnO2: V NPs.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Carmen Steluta Ciobanu ◽  
Simona Liliana Iconaru ◽  
Florian Massuyeau ◽  
Liliana Violeta Constantin ◽  
Adrian Costescu ◽  
...  

The luminescent europium-doped hydroxyapatite (Eu:HAp, Ca10−xEux(PO4)6(OH)2) with0≤x≤0.2nanocrystalline powders was synthesized by coprecipitation. The structural, morphological, and textural properties were well characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The vibrational studies were performed by Fourier transform infrared, Raman, and photoluminescence spectroscopies. The X-ray diffraction analysis revealed that hydroxyapatite is the unique crystalline constituent of all the samples, indicating that Eu has been successfully inserted into the HAp lattice. Eu doping inhibits HAp crystallization, leading to a decrease of the average crystallite size from around 20 nm in the undoped sample to around 7 nm in the sample with the highest Eu concentration. Furthermore, the samples show the characteristic5D0→7F0transition observed at 578 nm related to Eu3+ions distributed on Ca2+sites of the apatitic structure.


2016 ◽  
Vol 09 (03) ◽  
pp. 1650045 ◽  
Author(s):  
Pei-Ying Li ◽  
Kai-Yu Cheng ◽  
Xiu-Cheng Zheng ◽  
Pu Liu ◽  
Xiu-Juan Xu

Chitosan-ionic liquid conjugation (CILC), which was prepared through the reaction of 1-(4-bromobutyl)-3-methylimidazolium bromide (BBMIB) with chitosan, was firstly used to prepare functionalized graphene composite via the chemical reduction of graphene oxide (GO). The obtained water soluble graphene-based composite was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), ultraviolet-visible (UV–Vis) spectroscopy and so on. CILC-RGO showed excellent dispersion stability in water at the concentration of 2.0 mg/mL, which was stable for several months without any precipitate. This may be ascribed to the electrostatic attraction and [Formula: see text]–[Formula: see text] interaction between CILC and graphene.


2013 ◽  
Vol 4 ◽  
pp. 699-704 ◽  
Author(s):  
Raju Prakash ◽  
Katharina Fanselau ◽  
Shuhua Ren ◽  
Tapan Kumar Mandal ◽  
Christian Kübel ◽  
...  

A carbon-encapsulated Fe3O4 nanocomposite was prepared by a simple one-step pyrolysis of iron pentacarbonyl without using any templates, solvents or surfactants. The structure and morphology of the nanocomposite was investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller analysis and Raman spectroscopy. Fe3O4 nanoparticles are dispersed intimately in a carbon framework. The nanocomposite exhibits well constructed core–shell and nanotube structures, with Fe3O4 cores and graphitic shells/tubes. The as-synthesized material could be used directly as anode in a lithium-ion cell and demonstrated a stable capacity, and good cyclic and rate performances.


Sign in / Sign up

Export Citation Format

Share Document