ONE-POT SYNTHESIS OF Sb2Se3 NANOWIRES USING SELENIUM DIOXIDE AS THE SELENIUM PRECURSOR IN AIR AND THEIR CHARACTERIZATION

2013 ◽  
Vol 12 (05) ◽  
pp. 1350040
Author(s):  
MINGFU YE ◽  
TINGEING YI ◽  
LIXIN XU ◽  
GUOCHANG CHEN ◽  
YUNCHAO LI ◽  
...  

Orthorhombic phase of antimony triselenide ( Sb 2 Se 3) nanowires have been obtained by a facile and effective one-pot noninjection chemical route with controllable shape and size. The synthesis, which uses SeO 2 as the selenium precursor and can be conducted in air, is suitable for the larger-scale industrial synthesis of high-quality nanocrystals at low cost. The as-prepared nanocrystals were extensively characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). We believe that the method present here is a more straightforward and cost-effective route to prepare Sb 2 Se 3 nanocrystals with high quality. The band-edge positions of the Sb 2 Se 3 nanocrystals are studied by cyclic voltammetry (CV).

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 193
Author(s):  
Kamrun Nahar Fatema ◽  
Chang-Sung Lim ◽  
Yin Liu ◽  
Kwang-Youn Cho ◽  
Chong-Hun Jung ◽  
...  

We described the novel nanocomposite of silver doped ZrO2 combined graphene-based mesoporous silica (ZrO2-Ag-G-SiO2,) in bases of low-cost and self-assembly strategy. Synthesized ZrO2-Ag-G-SiO2 were characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, Nitrogen adsorption-desorption isotherms, X-ray photoelectron spectroscopy (XPS), and Diffuse Reflectance Spectroscopy (DRS). The ZrO2-Ag-G-SiO2 as an enzyme-free glucose sensor active material toward coordinate electro-oxidation of glucose was considered through cyclic voltammetry in significant electrolytes, such as phosphate buffer (PBS) at pH 7.4 and commercial urine. Utilizing ZrO2-Ag-G-SiO2, glucose detecting may well be finished with effective electrocatalytic performance toward organically important concentrations with the current reaction of 9.0 × 10−3 mAcm−2 and 0.05 mmol/L at the lowest potential of +0.2 V, thus fulfilling the elemental prerequisites for glucose detecting within the urine. Likewise, the ZrO2-Ag-G-SiO2 electrode can be worked for glucose detecting within the interferometer substances (e.g., ascorbic corrosive, lactose, fructose, and starch) in urine at proper pH conditions. Our results highlight the potential usages for qualitative and quantitative electrochemical investigation of glucose through the ZrO2-Ag-G-SiO2 sensor for glucose detecting within the urine concentration.


2019 ◽  
Vol 10 ◽  
pp. 62-70 ◽  
Author(s):  
Yong Li ◽  
Peng Yang ◽  
Bin Wang ◽  
Zhongqing Liu

Bimetallic phosphides have been attracting increasing attention due to their synergistic effect for improving the hydrogen evolution reaction as compared to monometallic phosphides. In this work, NiCoP modified hybrid electrodes were fabricated by a one-step electrodeposition process with TiO2 nanotube arrays (TNAs) as a carrier. X-ray diffraction, transmission electron microscopy, UV–vis diffuse reflection spectroscopy, X-ray photoelectron spectroscopy and scanning transmission electron microscopy/energy-dispersive X-ray spectroscopy were used to characterize the physiochemical properties of the samples. The electrochemical performance was investigated by cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy. We show that after incorporating Co into Ni–P, the resulting Ni x Co y P/TNAs present enhanced electrocatalytic activity due to the improved electron transfer and increased electrochemically active surface area (ECSA). In 0.5 mol L−1 H2SO4 electrolyte, the Ni x Co y P/TNAs (x = 3.84, y = 0.78) demonstrated an ECSA value of 52.1 mF cm−2, which is 3.8 times that of Ni–P/TNAs (13.7 mF cm−2). In a two-electrode system with a Pt sheet as the anode, the Ni x Co y P/TNAs presented a bath voltage of 1.92 V at 100 mA cm−2, which is an improvment of 79% over that of 1.07 V at 10 mA cm−2.


2019 ◽  
Vol 10 ◽  
pp. 1754-1767
Author(s):  
Ilka Simon ◽  
Julius Hornung ◽  
Juri Barthel ◽  
Jörg Thomas ◽  
Maik Finze ◽  
...  

NiGa is a catalyst for the semihydrogenation of alkynes. Here we show the influence of different dispersion times before microwave-induced decomposition of the precursors on the phase purity, as well as the influence of the time of microwave-induced decomposition on the crystallinity of the NiGa nanoparticles. Microwave-induced co-decomposition of all-hydrocarbon precursors [Ni(COD)2] (COD = 1,5-cyclooctadiene) and GaCp* (Cp* = pentamethylcyclopentadienyl) in the ionic liquid [BMIm][NTf2] selectively yields small intermetallic Ni/Ga nanocrystals of 5 ± 1 nm as derived from transmission electron microscopy (TEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and supported by energy-dispersive X-ray spectrometry (EDX), selected-area energy diffraction (SAED) and X-ray photoelectron spectroscopy (XPS). NiGa@[BMIm][NTf2] catalyze the semihydrogenation of 4-octyne to 4-octene with 100% selectivity towards (E)-4-octene over five runs, but with poor conversion values. IL-free, precipitated NiGa nanoparticles achieve conversion values of over 90% and selectivity of 100% towards alkene over three runs.


1998 ◽  
Vol 533 ◽  
Author(s):  
Glenn G. Jernigan ◽  
Conrad L. Silvestre ◽  
Mohammad Fatemi ◽  
Mark E. Twigg ◽  
Phillip E. Thompson

AbstractThe use of Sb as a surfactant in suppressing Ge segregation during SiGe alloy growth was investigated as a function of Sb surface coverage, Ge alloy concentration, and alloy thickness using xray photoelectron spectroscopy, x-ray diffraction, and transmission electron microscopy. Unlike previous studies where Sb was found to completely quench Ge segregation into a Si capping layer, we find that Sb can not completely prevent Ge segregation while Si and Ge are being co-deposited. This results in the production of a non-square quantum well with missing Ge at the beginning and extra Ge at the end of the alloy. We also found that Sb does not relieve strain in thin films but does result in compositional or strain variations within thick alloy layers.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 245 ◽  
Author(s):  
Sada Venkateswarlu ◽  
Saravanan Govindaraju ◽  
Roopkumar Sangubotla ◽  
Jongsung Kim ◽  
Min-Ho Lee ◽  
...  

The enormous ongoing industrial development has caused serious water pollution which has become a major crisis, particularly in developing countries. Among the various water pollutants, non-biodegradable heavy metal ions are the most prevalent. Thus, trace-level detection of these metal ions using a simple technique is essential. To address this issue, we have developed a fluorescent probe of Au/C nanodots (GCNDs-gold carbon nanodots) using an eco-friendly method based on an extract from waste onion leaves (Allium cepa-red onions). The leaves are rich in many flavonoids, playing a vital role in the formation of GCNDs. Transmission electron microscopy (TEM) and Scanning transmission electron microscopy-Energy-dispersive X-ray spectroscopy (STEM-EDS) elemental mapping clearly indicated that the newly synthesized materials are approximately 2 nm in size. The resulting GCNDs exhibited a strong orange fluorescence with excitation at 380 nm and emission at 610 nm. The GCNDs were applied as a fluorescent probe for the detection of Hg2+ ions. They can detect ultra-trace concentrations of Hg2+ with a detection limit of 1.3 nM. The X-ray photoelectron spectroscopy results facilitated the identification of a clear detection mechanism. We also used the new probe on a real river water sample. The newly developed sensor is highly stable with a strong fluorescent property and can be used for various applications such as in catalysis and biomedicine.


2019 ◽  
Vol 79 (7) ◽  
pp. 1276-1286 ◽  
Author(s):  
Tijani Hammedi ◽  
Mohamed Triki ◽  
Mayra G. Alvarez ◽  
Jordi Llorca ◽  
Abdelhamid Ghorbel ◽  
...  

Abstract This paper is built on the Fenton-like oxidation of p-hydroxybenzoic acid (p–HBZ) in the presence of H2O2 and 3%Fe supported on CeO2-TiO2 aerogels under mild conditions. These catalysts were deeply characterized by X-ray diffraction (XRD), hydrogen temperature programmed reduction (H2-TPR), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) and X-ray photoelectron spectroscopy (XPS). The effect of thermal treatment, pH (2–3, 5, 7), H2O2/p–HBZ molar ratio (5, 15, 20, 25) and reaction temperature (25 °C, 40 °C and 60 °C) on the catalytic properties of supported Fe catalysts are studied. Our results highlight the role of CeO2 and the calcination of the catalyst to obtain the highest catalytic properties after 10 min: 73% of p–HBZ conversion and 52% of total organic carbon (TOC) abatement.


2008 ◽  
Vol 1069 ◽  
Author(s):  
Hui Chen ◽  
Guan Wang ◽  
Michael Dudley ◽  
Zhou Xu ◽  
James. H. Edgar ◽  
...  

ABSTRACTA systematic study is presented of the heteroepitaxial growth of B12As2 on m-plane 15R-SiC. In contrast to previous studies of B12As2 on other substrates, including (100) Si, (110) Si, (111) Si and (0001) 6H-SiC, single crystalline and untwinned B12As2 was achieved on m-plane 15R-SiC. Observations of IBA on m-plane (1100)15R-SiC by synchrotron white beam x-ray topography (SWBXT) and high resolution transmission electron microscopy (HRTEM) confirm the good quality of the films on the 15R-SiC substrates. The growth mechanism of IBA on m-plane 15R-SiC is discussed. This work demonstrates that m-plane 15R-SiC is potentially a good substrate choice to grow high quality B12As2 epilayers.


Sign in / Sign up

Export Citation Format

Share Document