Osscillating Binding Energy of a Donor Impurity Confined Within CdS-SiO2 Constant Total Effective Radius Multi-Shells Quantum Dots

2016 ◽  
Vol 15 (01n02) ◽  
pp. 1650003
Author(s):  
M. Solaimani

In this paper, we have studied the effect of a number of wells and quantum dot thickness on binding energy of a single donor impurity confined within a CdS-SiO2 constant total effective radius multi-shells quantum dot (CTER-MSQD) system. We have shown that impurity binding energy versus number of wells in a quantum dot with fixed outer radius oscillates when amplitude increases. By using well number variation, adding impurity and changing quantum dot radius as three tuning tools, localization of wave-functions in each part of the quantum dot along the radius has been now made possible. Finally, adding the impurity leads to more probability of finding the electrons in the wells near the center of the quantum dot.

2013 ◽  
Vol 380-384 ◽  
pp. 4841-4844 ◽  
Author(s):  
Guang Xin Wang ◽  
Xiu Zhi Duan

The binding energy of a hydrogenic donor impurity in cylindrical GaAs quantum ring (QR) subjected to an external magnetic field is calculated within the effect mass approximation using variational method. The binding energy as a function of the QR size (the inner radius, the outer radius), the impurity position and the applied magnetic field is investigated. The results demonstrate that the ground state binding energy behaves as an decreasing function of the outer radius, and the magnetic field. Likewise, the binding energy is an increasing function of the inner radius. The binding energy firstly increases and then decreases with shifting the impurity ion from the internal surface of the QR to the external surface, indicating that there is a maximum.


2003 ◽  
Vol 17 (11) ◽  
pp. 2273-2279 ◽  
Author(s):  
S. BASKOUTAS ◽  
A. F. TERZIS ◽  
C. POLITIS

Binding energy for an exciton (X) bound in a parabolic two-dimensional quantum dot by an acceptor impurity A- located on the z-axis at a distance d from the dot plane, are calculated using the Hartree formalism with a recently developed numerical method (PMM) for the solution of the Schrödinger equation. As our analysis indicates there is a critical dot radius Rc such that for R < Rc the complex (A-, X) is unstable and with an increase of the impurity distance this critical radius increases. Furthermore, there is a critical value σc of the mass ratio [Formula: see text] such that for σ > σc the complex is stable.


2013 ◽  
Vol 475-476 ◽  
pp. 1355-1358
Author(s):  
Arnold Abramov

In this paper we present exact numerical procedure to calculate the binding energy and wave function of impurity states in a quantum dot with parabolic confinement. The developed method allows control the accuracy of obtained results, as well as calculates the characteristics of not only ground state, but also of the excited states. Comparison of our results with data obtained by other methods is in quantitative and qualitative agreement. We studied the effects of impurity position on the binding energy.


2006 ◽  
Vol 20 (18) ◽  
pp. 1127-1134 ◽  
Author(s):  
A. JOHN PETER

The binding energy of a shallow hydrogenic impurity of a spherical quantum dot confined by harmonic oscillator-like and by rectangular well-like potentials, using a variational procedure within the effective mass approximation, has been determined. The calculations of the binding energy of the donor impurity as a function of the system geometry, and the donor impurity position have been investigated. The binding energy of shallow donor impurity depends not only on the quantum confinements but also on the impurity position. Our results reveal that (i) the donor binding energy decreases as the dot size increases irrespective of the impurity position, and (ii) the binding energy values of rectangular confinement are larger than the values of parabolic confinement and (iii) the rectangular confinement is better than the parabolic confinement in a spherical quantum dot.


Sign in / Sign up

Export Citation Format

Share Document