Prediction of Machining Dimension in Laser Heating and Ultrasonic Vibration Composite Assisted Cutting of Tungsten Carbide

2018 ◽  
Vol 17 (01) ◽  
pp. 35-45 ◽  
Author(s):  
Feng Jiao ◽  
Ying Niu ◽  
Ming-Jun Zhang

Dimension precision plays an important role in precision machining. The two-dimensional ultrasonic vibration cutting (TDUVC) method reduces cutting force and alleviates tool wear, meanwhile, laser assisted cutting (LAC) improves the material workability under high temperature. In this paper, laser heating and two-dimensional ultrasonic vibration were combined in cutting of tungsten carbide (YG10) to improve machining dimension precision. According to the experimental results, a prediction model of machining dimension was built based on time series model. The results show that the machining dimension precision is improved significantly in laser and ultrasonic composite assisted cutting (LUAC), and AR (2) and AR (12) of time series model predicts machining dimension with high precision (the relative error is less than 10%), and reflects tool wear state. Moreover, comparison with artificial neural network (ANN) also proves that the time series model is more suitable for the prediction of machining dimensional in LUAC.

2016 ◽  
Vol 693 ◽  
pp. 1228-1234 ◽  
Author(s):  
Feng Jiao ◽  
Ying Niu ◽  
Jia Liang Qi ◽  
Jie Li

The prediction of tool wear can help understand the influence of tool wear on the machining process and result, and change or grind the worn tool in time. The two-dimensional ultrasonic vibration turning method can reduce the crack of tool and decrease the negative effect on processing thus extends the tool life. In this paper, two-dimensional ultrasonic cutting theory was applied to the precision machining of tungsten carbide. With self-developed two-dimensional ultrasonic cutting device, series of cutting experiments were carried out. During cutting process, the flank wear under different cutting length was observed; flank wear situations were compared with those in traditional cutting. In order to predict the tool wear and thus heighten the machining precision, a tool wear prediction model based on time series analysis method was built in the paper. The research results show the built AR (9) time series model can predict the flank wear condition with high precision.


2016 ◽  
Vol 693 ◽  
pp. 1272-1278
Author(s):  
Jie Li ◽  
Feng Jiao ◽  
Ying Niu ◽  
Long Fei Shi

Based on the mechanism of single-excitation elliptical vibration by means of opening chutes on the horn, a novel two-dimensional ultrasonic cutting system was developed. Vibration characteristics of the two-dimensional ultrasound cutting system were researched and the longitudinal and bending amplitude of the system with different number of chutes were obtained. By using developed two-dimensional ultrasonic vibration cutting systems, series of cutting experiments were carried out and cutting force characteristics were researched compared with that in traditional cutting.


Author(s):  
Feng Jiao ◽  
Ming-jun Zhang ◽  
Ying Niu

Laser heating assisted cutting is a lucrative technique for machining difficult-to-machine materials such as tungsten carbide (YG20), which uses a high power laser to focally heat a workpiece before the material removal with traditional or innovative cutting tool. In the latter case, the application of ultrasonic vibration to the cutting edge was found to replace the continuous cutting mode to the interrupted one, it reduces the adhesion and entanglement of chips, improves the tool wear and surface roughness of the workpiece. The combination of laser heating assisted cutting and two-dimensional ultrasonic vibration cutting methods has been successfully applied by the authors of this paper for cutting of tungsten carbide (YG20). In this follow-up study, the proposed composite method is experimentally and theoretically verified. Through the mathematical model and simulation analysis, its advantages, including small cutting force, softening the effect and improved machining properties of the processed material (YG20) are corroborated. The dependencies between the laser power, cutting speed, depth of cut, and feed rate on the surface roughness are established via the response surface methodology. The genetic algorithm is applied to the optimization of machining parameters by setting the material removal rate as the object variable and surface roughness as a constraint variable. The results obtained strongly suggest that the optimized parameters improve the processing efficiency and furnish the required processing quality.


2013 ◽  
Vol 651 ◽  
pp. 350-354 ◽  
Author(s):  
Alokesh Pramanik ◽  
Animesh Basak

This paper aims to investigate the mechanism of ductile machining of brittle material based on information available in the literature. It also explores the challenges associated with the ductile machining of brittle materials which stop the technology from being applied in practical fields. In addition, few factors that assist to improve productivity of ductile machining of brittle material have been discussed. It is found the higher tool wear is the main obstacle of this technology. The application ofmicro-laser heating,ultrasonic vibration and coolants improve the machining time and tool life significantly.


2014 ◽  
Vol 1027 ◽  
pp. 131-135
Author(s):  
Ying Niu ◽  
Feng Jiao ◽  
Jie Li ◽  
Jia Fei Zhang

Longitudinal-bending complex vibration can be realized by opening chute on the amplitude amplifier pole. Different longitudinal and bending amplitudes can be obtained under different angles and the number of the chutes. Based on the theory of two-dimensional ultrasonic cutting, the effects of the two dimensional amplitude on the cutting characteristics were analyzed experimentally in the paper. Research results show that the amplitudes of longitudinal and bending vibration have a great effect on cutting force and machining quality in two-dimensional ultrasonic vibration cutting of hard and brittle materials. When keeping constant longitudinal amplitude and increasing bending amplitude in a certain extent, the cutting force could be reduced and the machining quality of workpiece could be improved effectively. The research provides relevant basis for designing two-dimensional longitudinal bending vibration cutting system.


2019 ◽  
Author(s):  
Satoru Fukumori ◽  
Fumihiro Itoigawa ◽  
Satoru Maegawa ◽  
Takashi Nakamura ◽  
Eiji Shamoto

Sign in / Sign up

Export Citation Format

Share Document