An Integrated High-Speed Full Duplex Coherent OFDM-PON and Visible-Light Communication System

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Simarpreet Kaur ◽  
Mahendra Kumar ◽  
Ashu Verma

AbstractWe demonstrated a full duplex hybrid passive optical network and indoor optical wireless system employing coherent optical frequency division multiplexing. To accomplish reliable transmission in passive optical networks integrated visible-light communication (VLC), yellow light-emitting diode and infrared LED is used in downstream and upstream, respectively, for intra building network. In order to support high data rate, pulse-width reduction scheme based on dispersion compensation fiber is incorporated and system successfully covered the distance of 50 km. A data stream at the rate of 30 Gb/s is transmitted for each user out of eight users. VLC-supported users are catered with the bit rate of 1.87 Gb/s over 150 cm and in order to realize a low-cost system, visible and infrared LEDs are used in downlink and uplink, respectively.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Navjot Singh ◽  
Bharat Naresh Bansal

Abstract Wavelength division multiplexed passive optical is promising technique to achieve a high data rate and large number of user. The notable advantages of WDM PON is the combination of reliability, cheap in cost, accessible bandwidth, high security, large optical reach and it can support large number of ONU. There are multiple approaches to achieve high-speed WDN PON using different transmission techniques. In WDM, multiple lasers are required which increase the cost of the system. To reduce cost, an optical multicarrier generation system is proposed. An economical multiple carrier generation with the incorporation of sine generator and Mach–Zehndar modulator is demonstrated. Utmost work of sine generator and dual drive modulator was to attain low cost functioning of passive optical networks. Multicarrier generation was done and replacement of laser carriers with optical multicarrier generator. Carriers were generated with the frequency spacing of 20 GHz and these carriers were used in the passive optical networks with the tone-to-noise ratio of 40 dB, amplitude difference of 1.4 dB. For the transmission of downstream in the PON, differential phase shift keying was employed at 10 Gbps data speed. Transmission distance achieved was 30 km using single-mode fiber and this was a part of optical distribution network. Optical network unit was next part after ODN and signals were received with balanced receiver. Moreover, half signal was given to intensity modulator for the signal re-modulation. Bit error rate of 10–9 was achieved at all channels in the downstream. An upstream of 10 Gbps was accomplished in the passive optical network.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Xinyue Guo ◽  
Shuangshuang Li ◽  
Yang Guo

With the rapid development of light-emitting diode, visible light communication (VLC) has become a candidate technology for the next generation of high-speed indoor wireless communication. In this paper, we investigate the performance of the 32-quadrature amplitude modulation (32-QAM) constellation shaping schemes for the first time, where two special circular constellations, named Circular (4, 11, 17) and Circular (1, 5, 11, 15), and a triangular constellation are proposed based on the Shannon’s criterion. Theoretical analysis indicates that the triangular constellation scheme has the largest minimum Euclidian distance while the Circular (4, 11, 17) scheme achieves the lowest peak-to-average power ratio (PAPR). Experimental results show that the bit error rate performance is finally decided by the value of PAPR in the VLC system due to the serious nonlinearity of the LED, where the Circular (4, 11, 17) scheme always performs best under the 7% preforward error correction threshold of 3.8 × 10−3 with 62.5Mb/s transmission data rate and 1-meter transmission distance.


Author(s):  
Mário M. Freire ◽  
Paulo P. Monteiro ◽  
Henrique J.A. da Silva ◽  
José Ruela

Recently, Ethernet Passive Optical Networks (EPONs) have received a great amount of interest as a promising cost-effective solution for next-generation high-speed access networks. This is confirmed by the formation of several fora and working groups that contribute to their development, namely the EPON Forum (http://www. ieeecommunities.org/epon), the Ethernet in the First Mile Alliance (http://www.efmalliance.org), and the IEEE 802.3ah working group (http://www.ieee802. org/3/efm), which is responsible for the standardization process. EPONs are a simple, inexpensive, and scalable solution for high-speed residential access capable of delivering voice, high-speed data, and multimedia services to end users (Kramer, Mukherjee, & Maislos, 2003; Kramer & Pesavento, 2002; Lorenz, Rodrigues, & Freire, 2004; McGarry, Maier, & Reisslein, 2004; Pesavento, 2003). An EPON combines the transport of IEEE 802.3 Ethernet frames over a low-cost and broadband point-to-multipoint passive optical fibre infrastructure connecting the optical line terminal (OLT) located at the central office to optical network units (ONUs) usually located at the subscriber premises. In the downstream direction, the EPON behaves as a broadcast and select shared medium, with Ethernet frames transmitted by the OLT reaching every ONU. In the upstream direction, Ethernet frames transmitted by each ONU will only reach the OLT, but an arbitration mechanism is required to avoid collisions. This article provides an overview of EPONs focused several issues: EPON architecture, multipoint control protocol (MPCP), quality of service (QoS), and operations, administration, and maintenance (OAM) capability of EPONs.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1713
Author(s):  
Hyunwoo Jung ◽  
Sung-Man Kim

We experimentally demonstrated full-duplex light-emitting diode (LED)-to-LED visible light communication (VLC) using LEDs as the transmitter and receiver. Firstly, we investigated the performance dependency on the wavelengths of the LED transmitter and receiver by measuring the rise time and signal-to-noise ratio (SNR). Through the investigation, we were able to choose the optimal LED color set for LED-to-LED VLC using Shannon’s channel capacity law. The bit error rate (BER) results of full-duplex and half-duplex LED-to-LED VLC systems with the optimal LED sets are shown to compare the performance. Furthermore, we discuss major distortions and signal losses in the full-duplex LED-to-LED VLC system.


2015 ◽  
Vol 36 (4) ◽  
Author(s):  
Pravindra Kumar ◽  
Anand Srivastava

AbstractPassive optical networks based on orthogonal frequency division multiplexing (OFDM-PON) give better performance in high-speed optical access networks. For further improvement in performance, a new architecture of OFDM-PON based on spreading code in electrical domain is proposed and analytically analyzed in this paper. This approach is referred as hybrid multi-carrier code division multiple access-passive optical network (MC-CDMA-PON). Analytical results show that at bit error rate (BER) of 10


2021 ◽  
Author(s):  
Shimaa Naser ◽  
Lina Bariah ◽  
sami muhaidat ◽  
Mahmoud Al-Qutayri ◽  
Ernesto Damiani ◽  
...  

<div>Visible light communication is envisaged as a promising enabling technology for sixth generation (6G) and beyond networks. It was introduced as a key enabler for reliable massive-scale connectivity, mainly thanks to its simple and low-cost implementation which require minor variations to the existing indoor lighting systems. The key features of VLC allow offloading data traffic from the current congested radio frequency (RF) spectrum in order to achieve effective short-range, high speed, and green communications. However, several challenges prevent the realization of the full potentials of VLC, namely the limited modulation bandwidth of light emitting diodes, the interference resulted from ambient light, the effects of optical diffuse reflection, the non-linearity of devices, and the random receiver orientation. Meanwhile, centralized machine learning (ML) techniques have exhibited great potentials in handling different challenges in communication systems. Specifically, it has been recently shown that ML algorithms exhibit superior capabilities in handling complicated network tasks, such as channel equalization, estimation and modeling, resources allocation, opportunistic spectrum access control, non-linearity compensation, performance monitoring, detection, decoding/encoding, and network optimization. Nevertheless, concerns relating to privacy and communication overhead when sharing raw data of the involved clients with a server constitute major bottlenecks in large-scale implementation of centralized ML techniques. This has motivated the emergence of a new distributed ML paradigm, namely federated learning (FL). This method can reduce the cost associated with transferring the raw data, and preserve clients privacy by training ML model locally and collaboratively at the clients side. Thus, the integration of FL in VLC networks can provide ubiquitous and reliable implementation of VLC systems. Based on this, for the first time in the open literature, we provide an overview about VLC technology and FL. Then, we introduce FL and its integration in VLC networks and provide an overview on the main design aspects. Finally, we highlight some interesting future research directions of FL that are envisioned to boost the performance of VLC systems. </div>


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Ranbir Singh Mohal ◽  
Rajbir Kaur ◽  
Charanjit Singh

Abstract Long band (L-Band) passive optical networks (PONs) are attracting a lot of attention these days, thanks to rising capacity demands. Because of PONs requesting more and more channels, fault detection/monitoring is critical. Fault detection in the conventional band (C-Band) employing reflecting Fiber Bragg Gratings (FBGs) and a probe signal integrating an additional amplified spontaneous noise (ASEN) source has been frequently demonstrated. However, interference occurs when ASEN and transmitter signals are in the same wavelength band, and adding additional ASEN sources to the network raises the overall cost. So, in L-Band PONs, a cost-effective, low-complexity fault detection/monitoring system is required. Therefore, in this work, a fault detection/monitoring system for L-Band PON using C-Band ASEN from inline erbium doped fiber amplifier (EDFA) and dual purpose FBG, i.e. (1) ASEN reflection for fault monitoring and (2) dispersion compensation is proposed. A 4 × 10 Gbps L-Band PON is investigated over 40 km feeder fiber (FF) and 1 km drop fibers (DFs) that serve 32 optical network units (ONUs)/different input powers, dispersion values, and laser linewidths in terms of reflective power of FBGs, eye opening factor, and bit error rate (BER), respectively.


2010 ◽  
Vol 33 (5) ◽  
pp. 707-716
Author(s):  
Zih‐Rong Lin ◽  
Cheng‐Kuang Liu ◽  
Gerd Keiser ◽  
San‐Liang Lee ◽  
Kuo‐Chieh Lai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document