Predictive machine learning and data acquisition for power quality improvement in facts devices with optimum power flow control based on cross difference progression and coordination examining algorithm

Author(s):  
A. Mohamed Ibrahim ◽  
C. Karthikeyan

Flexible AC Transmission Systems (FACTS) present a decision to issue trouble relief for over-extended electric power transmission lines as a result of optimal power flow (OPF) by controlling. To keep away from conventional impacts among a few gadgets placed in a similar grid, an organized control is fundamental. To defeat the issues which happen in optimal power flow to actualize the cross difference progression and coordination inspects strategy, a supervisory controller giving difference progression power flow with numerous destinations is acquired for avoiding congestion, it gives secure transmission and farthest point dynamic power misfortunes. There is no information on gadgets that have been defined in this systematic control of Thyristor controlled series capacitor (TCSC) and Thyristor controlled phase shifting Transformer (TCPST), static VAR compensator (SVC), all of these compensators providing efficient improvements and situations are described. Different optimization techniques are used as a part of the character to deal with the problem of OPF. In some experimental works, the upgrade method is used for finding out all of the fuel costs or the environmental pollution that occurs during the generation of energy. However, in some further research actions, FACTS controlled devices are used to develop the flow of electricity without considering the cost of electricity generation. While a specific end goal of using the FACTS control devices is to help optimize the congestion in the power system, it also aggregates the power loss which enhances the load capacity of the structure. The FACTS and its practical limitations are executed into the IEEE 30-bus test power framework and customized utilizing the Cross Difference Progression and Coordination Examining (CDP&CE) algorithm with MATLAB and the outcomes are given. Here, IoT-based data analytics is defined as the process, which is used to examine varied data from the bus system using Principal Component Analysis (PCA) method, the results of which help to take the necessary decisions. The effect of FACTS gadgets is implemented on standard IEEE-30 transmission framework with supporting numerical outcomes by utilizing MATLAB Software.

2018 ◽  
Vol 54 (3A) ◽  
pp. 52
Author(s):  
Duong Thanh Long

Optimal Power Flow (OPF) problem is an optimization tool through which secure and economic operating conditions of power system is obtained. In recent years, Flexible AC Transmission System (FACTS) devices, have led to the development of controllers that provide controllability and flexibility for power transmission. Series FACTS devices such as Thyristor controlled series compensators (TCSC), with its ability to directly control the power flow can be very effective to power system security. Thus, integration TCSC in the OPF is one of important current problems and is a suitable method for better utilization of the existing system. This paper is applied Cuckoo Optimization Algorithm (COA) for the solution of the OPF problem of power system equipped with TCSC. The proposed approach has been examined and tested on the IEEE 30-bus system. The results presented in this paper demonstrate the potential of COA algorithm and show its effectiveness for solving the OPF problem with TCSC devices over the other evolutionary optimization techniques.


Author(s):  
PRANALI H. DEKATE

The modern power system is operating closed to its voltage and thermal instability limits. The present transmission network was not originally planned for heavy power trading in the market. The time is to maximize the utilization of existing transmission lines and to manage the congestion. FACTS (Flexible AC transmission system) devices are having capability of improving power transmission, improving voltage profile, minimizing power losses, etc. This paper presents a review on how FACTS devices are used to provide the maximum relief to the congested line by computation techniques. The proposed paper uses sensitivity index to locate FACTS devices optimally. These computation techniques are used solve the OPF (Optimal Power Flow) problems on various IEEE buses.


Author(s):  
Aboubakr Khelifi ◽  
Bachir Bentouati ◽  
Saliha Chettih

Optimal Power Flow (OPF) problem is one of the most important and widely studied nonlinear optimization problems in power system operation. This study presents the implementation of a new technology based on the hybrid Firefly and krill herd method (FKH), which has been provided and used for OPF problems in power systems. In FKH, an improved formulation of the attractiveness and adjustment of light intensity operator initially employed in FA, named attractiveness and light intensity the update operator (ALIU), is inserted into the KH approach as a local search perform. The FKH is prove with the solving of the OPF problem for various types of single-objective and multi-objective functions such as generation cost, reduced emission, active power losses and voltage deviation which are optimized simultaneously on exam system, viz the IEEE-30 Bus test system, which is used to test and confirm the efficiency of the proposed FKH technique. By comparing with several optimization techniques, the results produced by using the recommended FKH technique are provided in detail. The results obtained in this study appear that the FKH technique can be efficiency used to solve the non-linear and non-convex problems and high performance compared with other optimization methods in the literature. This study can achieve a minimum objective by finding the optimum setting for system control variables.


2013 ◽  
Vol 4 (1) ◽  
pp. 82-87
Author(s):  
Netra M Lokhande ◽  
Debirupa Hore

The purpose of this paper is to present a computational Analysis of various Artificial Intelligence based optimization Techniques used to solve OPF problems. The various Artificial Intelligence methods such as Genetic Algorithm(GA), Particle Swarm Optimization(PSO), Bacterial Foraging Optimization(BFO), ANN are studied and analyzed in detail. The objective of an Optimal Power Flow (OPF) algorithm is to find steady state operation point which minimizes generation cost and transmission loss etc. or maximizes social welfare, load ability etc. while maintaining an acceptable system performance in terms of limits on generators’ real and reactive powers, power flow limits, output of various compensating devices etc. Traditionally, Classical optimization methods were used effectively to solve optimal power flow. But, recently due to the incorporation of FACTS devices and deregulation of power sector the traditional concepts and practices of power systems are superimposed by an economic market management and hence OPF have become more complex. So, in recent years, Artificial Intelligence (AI) methods have been emerged which can solve highly complex OPF problems at faster rate.


2021 ◽  
Vol 10 (1) ◽  
pp. 82-110
Author(s):  
Sriparna Banerjee ◽  
Dhiman Banerjee ◽  
Provas Kumar Roy ◽  
Pradip Kumar Saha ◽  
Goutam Kumar Panda

This article specifically aims to prove the superiority of the proposed moth swarm algorithm (MSA) in view of wind-thermal coordination. In the present article, a probabilistic optimal power flow (POPF) problem is formulated to reflect the probabilistic nature of wind. Modelling of doubly fed induction generator (DFIG) is included in the proposed POPF to represent the wind energy conversion system (WECS). To reduce DFIG imposed deviation of bus voltage ancillary reactive power support is considered. Moreover, three different optimization techniques, namely, MSA, biogeography-based optimization (BBO), and particle swarm optimization (PSO) are independently applied for the minimization of active power generation cost for wind-thermal coordination, considering different instances in case of IEEE 30-bus and IEEE 118-bus system. From the simulation results, it is confirmed and validated that the proposed MSA performs considerably better than BBO and PSO.


2019 ◽  
Vol 10 (1) ◽  
pp. 242 ◽  
Author(s):  
Ali Raza ◽  
Armughan Shakeel ◽  
Ali Altalbe ◽  
Madini O. Alassafi ◽  
Abdul Rehman Yasin

In this paper, improvement in the power transfer capacity of transmission lines (TLs) by utilizing a multi-terminal high voltage direct current (MT-HVDC) grid is discussed. A multi-terminal HVDC grid designed for wind power can be used as an extra transmission path in interconnected systems during low wind conditions, and provides extra dynamic stability and security. This paper deals with the power transfer capacity as well as the small signal (SS) stability assessments in less damped oscillations accompanying inter area modes. Computation of the maximum allowable power transfer capability is assessed via DC optimal power flow-based control architecture, permitting more power transfer with a definite security margin. The test system is assessed with and without the exploitation of MT-HVDC grid. Simulation work is done using a generic computational framework i.e., international council on large electric systems (CIGRE) B4 test bench with a Kundur’s two area system, shows that voltage source converters (VSCs) provide excellent control and flexibility, improving the power transfer capability keeping the system stable.


Author(s):  
Anwar S. Siddiqui ◽  
Tanmoy Deb

With severe overload on transmission lines, further exchange of power flow is affected due to congestion on power transmission lines. This paper investigates the effect of Flexible AC Transmission System (FACTS) devices like TCSC and UPFC in congestion mitigation. The proposal uses multiple FACTS devices of similar type and investigates their effect on congestion mitigation in high voltage transmission lines. This proposal is tested on IEEE-14 bus system.


Sign in / Sign up

Export Citation Format

Share Document