IMPROVING THE SENSITIVITY AND SPECIFICITY OF PROTEIN HOMOLOGY SEARCH BY INCORPORATING PREDICTED SECONDARY STRUCTURES

2006 ◽  
Vol 04 (03) ◽  
pp. 709-720 ◽  
Author(s):  
BIN MA ◽  
LIEYU WU ◽  
KAIZHONG ZHANG

In this paper, we improve the homology search performance by the combination of the predicted protein secondary structures and protein sequences. Previous research suggested that the straightforward combination of predicted secondary structures did not improve the homology search performance, mostly because of the errors in the structure prediction. We solved this problem by taking into account the confidence scores output by the prediction programs.

2013 ◽  
Vol 11 (05) ◽  
pp. 1350012 ◽  
Author(s):  
PRADIP GHANTY ◽  
NIKHIL R. PAL ◽  
RAJANI K. MUDI

In this paper, we propose some co-occurrence probability-based features for prediction of protein secondary structure. The features are extracted using occurrence/nonoccurrence of secondary structures in the protein sequences. We explore two types of features: position-specific (based on position of amino acid on fragments of protein sequences) as well as position-independent (independent of amino acid position on fragments of protein sequences). We use a hybrid system, NEUROSVM, consisting of neural networks and support vector machines for classification of secondary structures. We propose two schemes NSVMps and NSVM for protein secondary structure prediction. The NSVMps uses position-specific probability-based features and NEUROSVM classifier whereas NSVM uses the same classifier with position-independent probability-based features. The proposed method falls in the single-sequence category of methods because it does not use any sequence profile information such as position specific scoring matrices (PSSM) derived from PSI-BLAST. Two widely used datasets RS126 and CB513 are used in the experiments. The results obtained using the proposed features and NEUROSVM classifier are better than most of the existing single-sequence prediction methods. Most importantly, the results using NSVMps that are obtained using lower dimensional features, are comparable to those by other existing methods. The NSVMps and NSVM are finally tested on target proteins of the critical assessment of protein structure prediction experiment-9 (CASP9). A larger dataset is used to compare the performance of the proposed methods with that of two recent single-sequence prediction methods. We also investigate the impact of presence of different amino acid residues (in protein sequences) that are responsible for the formation of different secondary structures.


2021 ◽  
Author(s):  
Yin Yao ◽  
Martin C. Frith

AbstractProtein fossils, i.e. noncoding DNA descended from coding DNA, arise frequently from transposable elements (TEs), decayed genes, and viral integrations. They can reveal, and mislead about, evolutionary history and relationships. They have been detected by comparing DNA to protein sequences, but current methods are not optimized for this task. We describe a powerful DNA-protein homology search method. We use a 64×21 substitution matrix, which is fitted to sequence data, automatically learning the genetic code. We detect subtly homologous regions by considering alternative possible alignments between them, and calculate significance (probability of occurring by chance between random sequences). Our method detects TE protein fossils much more sensitively than blastx, and > 10× faster. Of the ~7 major categories of eukaryotic TE, three have not been found in mammals: we find two of them in the human genome, polinton and DIRS/Ngaro. This method increases our power to find ancient fossils, and perhaps to detect non-standard genetic codes. The alternative-alignments and significance paradigm is not specific to DNA-protein comparison, and could benefit homology search generally.


2021 ◽  
Vol 22 (21) ◽  
pp. 11449
Author(s):  
Gabriel Bianchin de Oliveira ◽  
Helio Pedrini ◽  
Zanoni Dias

Protein secondary structures are important in many biological processes and applications. Due to advances in sequencing methods, there are many proteins sequenced, but fewer proteins with secondary structures defined by laboratory methods. With the development of computer technology, computational methods have (started to) become the most important methodologies for predicting secondary structures. We evaluated two different approaches to this problem—driven by the recent results obtained by computational methods in this task—i) template-free classifiers, based on machine learning techniques; and ii) template-based classifiers, based on searching tools. Both approaches are formed by different sub-classifiers—six for template-free and two for template-based, each with a specific view of the protein. Our results show that these ensembles improve the results of each approach individually.


2014 ◽  
Vol 07 (05) ◽  
pp. 1450052 ◽  
Author(s):  
Yonge Feng ◽  
Liaofu Luo

In this paper, we first combine tetra-peptide structural words with contact number for protein secondary structure prediction. We used the method of increment of diversity combined with quadratic discriminant analysis to predict the structure of central residue for a sequence fragment. The method is used tetra-peptide structural words and long-range contact number as information resources. The accuracy of Q3 is over 83% in 194 proteins. The accuracies of predicted secondary structures for 20 amino acid residues are ranged from 81% to 88%. Moreover, we have introduced the residue long-range contact, which directly indicates the separation of contacting residue in terms of the position in the sequence, and examined the negative influence of long-range residue interactions on predicting secondary structure in a protein. The method is also compared with existing prediction methods. The results show that our method is more effective in protein secondary structures prediction.


Author(s):  
Zhiliang Lyu ◽  
Zhijin Wang ◽  
Fangfang Luo ◽  
Jianwei Shuai ◽  
Yandong Huang

Protein secondary structures have been identified as the links in the physical processes of primary sequences, typically random coils, folding into functional tertiary structures that enable proteins to involve a variety of biological events in life science. Therefore, an efficient protein secondary structure predictor is of importance especially when the structure of an amino acid sequence fragment is not solved by high-resolution experiments, such as X-ray crystallography, cryo-electron microscopy, and nuclear magnetic resonance spectroscopy, which are usually time consuming and expensive. In this paper, a reductive deep learning model MLPRNN has been proposed to predict either 3-state or 8-state protein secondary structures. The prediction accuracy by the MLPRNN on the publicly available benchmark CB513 data set is comparable with those by other state-of-the-art models. More importantly, taking into account the reductive architecture, MLPRNN could be a baseline for future developments.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Hiroyuki Fukuda ◽  
Kentaro Tomii

Abstract Background Recently developed methods of protein contact prediction, a crucially important step for protein structure prediction, depend heavily on deep neural networks (DNNs) and multiple sequence alignments (MSAs) of target proteins. Protein sequences are accumulating to an increasing degree such that abundant sequences to construct an MSA of a target protein are readily obtainable. Nevertheless, many cases present different ends of the number of sequences that can be included in an MSA used for contact prediction. The abundant sequences might degrade prediction results, but opportunities remain for a limited number of sequences to construct an MSA. To resolve these persistent issues, we strove to develop a novel framework using DNNs in an end-to-end manner for contact prediction. Results We developed neural network models to improve precision of both deep and shallow MSAs. Results show that higher prediction accuracy was achieved by assigning weights to sequences in a deep MSA. Moreover, for shallow MSAs, adding a few sequential features was useful to increase the prediction accuracy of long-range contacts in our model. Based on these models, we expanded our model to a multi-task model to achieve higher accuracy by incorporating predictions of secondary structures and solvent-accessible surface areas. Moreover, we demonstrated that ensemble averaging of our models can raise accuracy. Using past CASP target protein domains, we tested our models and demonstrated that our final model is superior to or equivalent to existing meta-predictors. Conclusions The end-to-end learning framework we built can use information derived from either deep or shallow MSAs for contact prediction. Recently, an increasing number of protein sequences have become accessible, including metagenomic sequences, which might degrade contact prediction results. Under such circumstances, our model can provide a means to reduce noise automatically. According to results of tertiary structure prediction based on contacts and secondary structures predicted by our model, more accurate three-dimensional models of a target protein are obtainable than those from existing ECA methods, starting from its MSA. DeepECA is available from https://github.com/tomiilab/DeepECA.


Sign in / Sign up

Export Citation Format

Share Document