Dynamics of tripartite quantum correlations in mixed classical environments: The joint effects of the random telegraph and static noises

2017 ◽  
Vol 15 (05) ◽  
pp. 1750038 ◽  
Author(s):  
Lionel Tenemeza Kenfack ◽  
Martin Tchoffo ◽  
Georges Collince Fouokeng ◽  
Lukong Cornelius Fai

In the present paper, the joint effects of two kinds of classical environmental noises, without direct interaction among each other, on the dynamics of quantum correlations (QCs) of a three-qubit system coupled in independent environments is investigated. More precisely, we join the random telegraph noise (RTN) and the static noise (SN) and focus on the dynamics of entanglement and quantum discord (QD) when the qubits are initially prepared in the GHZ- and W-type states. The overall noise affecting the qubits is obtained by combining the RTN and SN in two different setups. The results show that the disorder of the environmental noise as well as its memory qualities and the purity of the initial state considered play a crucial role in the time evolution of the system in such a way that the dynamics of QCs can be controlled by varying them. In fact, we show that, depending on the initial state and noise regime considered, the rate of collapse of QCs may either decrease or increase with the increase of the degree of disorder of the SN, the switching rate of the RTN and the purity of the initial state.

2018 ◽  
Vol 17 (03) ◽  
pp. 1850023 ◽  
Author(s):  
Mahmood Shamirzaie ◽  
Salman Khan

The dynamics of three different entropic measures of quantum correlations in mixed bipartite qubit states in the presence of two different classical noises, the static noise (SN) and the random telegraph noise (RTN), are investigated. The three entropic measures of quantum correlations correspond to one-way information deficit, geometric quantum discord and the cubic information. General analytic relations for each quantifier in the two configurations are obtained. In both configurations, the minimized value of each measure of quantum correlations corresponds to the conditional entropy of the same projectors. It is shown that one-way information deficit captures more correlations in highly mixed initial states. On the contrary, in both configurations the cubic information reduces to the geometric quantum discord and captures more correlations for highly pure initial states. The periodic revival of each measure of quantum correlation is more prominent in the case of RTN.


2021 ◽  
Author(s):  
Fadwa Benabdallah ◽  
Hamid Arian Zad ◽  
Mohammed Daoud ◽  
Nerses S Ananikian

Abstract We study the dimensionless time evolution of the logarithmic negativity and geometric quantum discord of a qubit-qutrit XXX spin model under the both Markovian and non-Markovian noise channels. We find that at a special temperature interval the quantum entanglement based on the logarithmic negativity reveals entanglement sudden deaths together with revivals. The revival phenomenon is due to the non-Markovianity resulting from the feedback effect of the environment. At high temperatures, the scenario of death and revival disappears. The geometric quantum discord evolves alternatively versus time elapsing with damped amplitudes until the system reaches steady state. It is demonstrated that the dynamics of entanglement negativity undergoes substantial changes by varying temperature, and it is much more fragile against the temperature rather than the geometric quantum discord. The real complex heterodinuclear [Ni(dpt (H2O)Cu(pba)]·2H2O [with pba =1,3-propylenebis(oxamato) and dpt = bis-(3-aminopropyl)amine] is an experimental representative of our considered bipartite qubit-qutrit system that may show remarkable entanglement deaths and revivals at relatively high temperatures and high magnetic field that is comparable with the strength of the exchange interaction J between Cu+2 and Ni+2 ions, i.e., kBT ≈ J and μBB ≈ J.


2017 ◽  
Vol 15 (06) ◽  
pp. 1750047 ◽  
Author(s):  
Tsamouo Tsokeng Arthur ◽  
Tchoffo Martin ◽  
Lukong Cornelius Fai

We investigate the dynamics of entanglement, quantum discord (QD) and state coherence in a bipartite and noninteracting spin-qutrits system under mixed classical noises. Specifically, the collective effects of static noise (SN) and random telegraphic noise (RTN) each being coupled with a marginal system, are analyzed. While the static noise models a non-Markovian environment, the dynamic noise can model both a Markovian or a non-Markovian environment, and both dynamics are studied. We show that quantum correlations and coherence may survive the noise degrading effects at sufficiently long time when the Markovian regime of the RTN is considered. Meanwhile, the opposite is found in the non-Markovian regime, wherein the nonmonotonic dynamics of quantum features avoid sudden death phenomena. However, the static noise is more fatal to the survival of quantum correlations and quantum state coherence as compared to the RTN.


2017 ◽  
Vol 31 (08) ◽  
pp. 1750046 ◽  
Author(s):  
Tenemeza Kenfack Lionel ◽  
Tchoffo Martin ◽  
Fouokeng Georges Collince ◽  
Lukong Cornelius Fai

Correlations in open quantum systems exhibit peculiar phenomena under the effect of various sources of noise. Here, we investigate the dynamics of entanglement and quantum discord (QD) for three noninteracting qubits coupled with a classical environmental static noise characterized by an external random field. Two initial entangled states of the system are examined, namely, the GHZ- and [Formula: see text]-type states. The system-environment interaction is here analyzed in three different configurations, namely, independent, mixed and common environments. We find that the dynamics of quantum correlations are strongly affected by the type of system-environment interaction and the purity of the initial entangled state. Indeed, depending on the type of interaction and the value of the purity of the initial state, peculiar phenomena such as sudden death, revivals and long-time survival of quantum correlations are observed. On the other hand, our results clearly show that quantum correlations initially present in the [Formula: see text]-type states are less robust than those of the GHZ-type states. Furthermore, we find that the long-time survival of entanglement can be detected by means of the suitable entanglement witnesses.


Entropy ◽  
2020 ◽  
Vol 22 (7) ◽  
pp. 785 ◽  
Author(s):  
Iulia Ghiu ◽  
Roberto Grimaudo ◽  
Tatiana Mihaescu ◽  
Aurelian Isar ◽  
Antonino Messina

We study and compare the time evolutions of concurrence and quantum discord in a driven system of two interacting qubits prepared in a generic Werner state. The corresponding quantum dynamics is exactly treated and manifests the appearance and disappearance of entanglement. Our analytical treatment transparently unveils the physical reasons for the occurrence of such a phenomenon, relating it to the dynamical invariance of the X structure of the initial state. The quantum correlations which asymptotically emerge in the system are investigated in detail in terms of the time evolution of the fidelity of the initial Werner state.


2019 ◽  
Vol 16 (07) ◽  
pp. 1950109
Author(s):  
Fatima-Zahra Siyouri ◽  
Hicham Ait Mansour ◽  
Fadoua Elbarrichi

We investigate the ability of Wigner function to reveal and measure general quantum correlations in two-qubit open system. For this purpose, we analyze comparatively their dynamics for two different states, continuous-variable Werner states (CWS) and Bell-diagonal states (BDS), independently interacting with dephasing reservoirs. Then, we explore the effects of decreasing the degree of non-Markovianity on their behavior. We show that the presence of both quantum entanglement and quantum discord allow to have a negative Wigner function, in contrast to the result obtained for the closed two-qubit system [F. Siyouri, M. El Baz and Y. Hassouni, The negativity of Wigner function as a measure of quantum correlations, Quantum Inf. Process. 15(10) (2016) 4237–4252]. In fact, we conclude that negativity of Wigner function can be used to capture and quantify the amount of general non-classical correlations in open quantum systems.


2012 ◽  
Vol 27 (01n03) ◽  
pp. 1345053 ◽  
Author(s):  
ROSARIO LO FRANCO ◽  
BRUNO BELLOMO ◽  
SABRINA MANISCALCO ◽  
GIUSEPPE COMPAGNO

Knowledge of the dynamical behavior of correlations with no classical counterpart, like entanglement, nonlocal correlations and quantum discord, in open quantum systems is of primary interest because of the possibility to exploit these correlations for quantum information tasks. Here we review some of the most recent results on the dynamics of correlations in bipartite systems embedded in non-Markovian environments that, with their memory effects, influence in a relevant way the system dynamics and appear to be more fundamental than the Markovian ones for practical purposes. Firstly, we review the phenomenon of entanglement revivals in a two-qubit system for both independent environments and a common environment. We then consider the dynamics of quantum discord in non-Markovian dephasing channel and briefly discuss the occurrence of revivals of quantum correlations in classical environments.


2019 ◽  
Vol 65 (4 Jul-Aug) ◽  
pp. 412 ◽  
Author(s):  
S. Ahadpour ◽  
And F. Mirmasoudi

We study the pairwise quantum correlations for teleported state via a symmetric multi-qubitsystem. In the other words, the proposed model is considered as a quantum channel. Using thequantum discord, super quantum discord and concurrence to quantify quantum correlations forteleported state, some analytical and numerical results are presented. Moreover, we compare thedynamical evolutions of quantum correlations and fidelity versus measurement strength and thenumber of qubit channel for teleported state via symmetric multi-qubit model. Our main goalnow is to study how we can increase the quantum correlations and the fidelity of the teleportedstate in the presence of decoherence. The results show that, measurement strength and thenumber of qubit can control the quantum information obtained through the quantum channel.Therefore, measurement strength can be a good option for measuring exchanged information inthe teleportation process. In addition to, quantum correlations can provide an effective role inquantum teleportation


Sign in / Sign up

Export Citation Format

Share Document