scholarly journals The pairwise quantum correlations for teleported state via a symmetric multi-qubit system

2019 ◽  
Vol 65 (4 Jul-Aug) ◽  
pp. 412 ◽  
Author(s):  
S. Ahadpour ◽  
And F. Mirmasoudi

We study the pairwise quantum correlations for teleported state via a symmetric multi-qubitsystem. In the other words, the proposed model is considered as a quantum channel. Using thequantum discord, super quantum discord and concurrence to quantify quantum correlations forteleported state, some analytical and numerical results are presented. Moreover, we compare thedynamical evolutions of quantum correlations and fidelity versus measurement strength and thenumber of qubit channel for teleported state via symmetric multi-qubit model. Our main goalnow is to study how we can increase the quantum correlations and the fidelity of the teleportedstate in the presence of decoherence. The results show that, measurement strength and thenumber of qubit can control the quantum information obtained through the quantum channel.Therefore, measurement strength can be a good option for measuring exchanged information inthe teleportation process. In addition to, quantum correlations can provide an effective role inquantum teleportation

2016 ◽  
Vol 14 (03) ◽  
pp. 1650016 ◽  
Author(s):  
Ya-Li Yuan ◽  
Xi-Wen Hou

The investigation of quantum discord has mostly focused on two-qubit systems due to the complicated minimization involved in quantum discord for high-dimensional states. In this work, three geometric discords are studied for the thermal state in a two-qutrit system with various couplings, external magnetic fields, and temperatures as well, where the entanglement measured in terms of the generalized negativity is calculated for reference. It is shown that three geometric discords are more robust against temperature and magnetic field than the entanglement negativity. However, all four quantities exhibit a similar behavior at lower temperature and weak magnetic field. Remarkably, three geometric discords at finite temperature reveal the phenomenon of double sudden changes at different magnetic fields while the negativity does not. Moreover, the hierarchy among three discords is discussed. Those adjustable discords with the varied coupling, temperature, and magnetic field are useful for the understanding of quantum correlations in high-dimensional states and quantum information processing.


2013 ◽  
Vol 11 (03) ◽  
pp. 1350029
Author(s):  
SHAO-XIONG WU ◽  
JUN ZHANG ◽  
CHANG-SHUI YU ◽  
HE-SHAN SONG

We study the quantum correlations between source and target pairs in different protocols of entanglement distillation of one kind of entangled states. We find that there does not exist any quantum correlation in the standard recurrence distillation protocol, while quantum discord and even quantum entanglement are always present in the other two cases of the improved distillation protocols. In the three cases, the distillation efficiency improved with the quantum correlations enhanced.


2015 ◽  
Vol 13 (06) ◽  
pp. 1550044 ◽  
Author(s):  
P. Espoukeh ◽  
R. Rahimi ◽  
S. Salimi ◽  
P. Pedram

Many-qubit entanglement is crucial for quantum information processing although its exploitation is hindered by the detrimental effects of the environment surrounding the many-qubit system. It is thus of importance to study the dynamics of general multipartite non-classical correlation, including but not restricted to entanglement, under noise. We did this study for four-qubit Greenberger–Horne–Zeilinga (GHZ) state under most common noises in an experiment and found that non-classical correlation is more robust than entanglement except when it is imposed to dephasing channel. Quantum discord presents a sudden transition in its dynamics for Pauli-X and Pauli-Y noises as well as Bell-diagonal states interacting with dephasing reservoirs and it decays monotonically for Pauli-Z and isotropic noises.


2017 ◽  
Vol 15 (05) ◽  
pp. 1750038 ◽  
Author(s):  
Lionel Tenemeza Kenfack ◽  
Martin Tchoffo ◽  
Georges Collince Fouokeng ◽  
Lukong Cornelius Fai

In the present paper, the joint effects of two kinds of classical environmental noises, without direct interaction among each other, on the dynamics of quantum correlations (QCs) of a three-qubit system coupled in independent environments is investigated. More precisely, we join the random telegraph noise (RTN) and the static noise (SN) and focus on the dynamics of entanglement and quantum discord (QD) when the qubits are initially prepared in the GHZ- and W-type states. The overall noise affecting the qubits is obtained by combining the RTN and SN in two different setups. The results show that the disorder of the environmental noise as well as its memory qualities and the purity of the initial state considered play a crucial role in the time evolution of the system in such a way that the dynamics of QCs can be controlled by varying them. In fact, we show that, depending on the initial state and noise regime considered, the rate of collapse of QCs may either decrease or increase with the increase of the degree of disorder of the SN, the switching rate of the RTN and the purity of the initial state.


2013 ◽  
Vol 27 (07) ◽  
pp. 1350049 ◽  
Author(s):  
XUE-KE SONG ◽  
TAO WU ◽  
LIU YE

In this paper, we obtain the pairwise quantum discord for a three-qubit W-class state, and investigate the monogamy property of quantum discord by two different ways (relative entropy-based distance and geometric square-norm distance). Through numerical calculations, we find that a party cannot have maximal quantum correlations with the other two parties simultaneously. For the given state, the quantum correlation between particles 1 and 3 induces limitation on the quantum correlation between them and particle 2. Moreover, the result also shows that the geometric quantum discord of the given W-class state obeys the monogamy property while the entropy quantum discord violates.


Axioms ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 20
Author(s):  
Diego G. Bussandri ◽  
Tristán M. Osán ◽  
Pedro W. Lamberti ◽  
Ana P. Majtey

We built a new set of suitable measures of correlations for bipartite quantum states based upon a recently introduced theoretical framework [Bussandri et al. in Quantum Inf. Proc. 18:57, 2019]. We applied these measures to examine the behavior of correlations in two-qubit states with maximally mixed marginals independently interacting with non-dissipative decohering environments in different dynamical scenarios of physical relevance. In order to get further insight about the physical meaning of the behavior of these correlation measures we compared our results with those obtained by means of well-known correlation measures such as quantum mutual information and quantum discord. On one hand, we found that the behaviors of total and classical correlations, as assessed by means of the measures introduced in this work, are qualitatively in agreement with the behavior displayed by quantum mutual information and the measure of classical correlations typically used to calculate quantum discord. We also found that the optimization of all the measures of classical correlations depends upon a single parameter and the optimal value of this parameter turns out to be the same in all cases. On the other hand, regarding the measures of quantum correlations used in our studies, we found that in general their behavior does not follow the standard quantum discord D . As the quantification by means of standard quantum discord and the measures of quantum correlations introduced in this work depends upon the assumption that total correlations are additive, our results indicate that this property needs a deeper and systematic study in order to gain a further understanding regarding the possibility to obtain reliable quantifiers of quantum correlations within this additive scheme.


2019 ◽  
Vol 16 (07) ◽  
pp. 1950109
Author(s):  
Fatima-Zahra Siyouri ◽  
Hicham Ait Mansour ◽  
Fadoua Elbarrichi

We investigate the ability of Wigner function to reveal and measure general quantum correlations in two-qubit open system. For this purpose, we analyze comparatively their dynamics for two different states, continuous-variable Werner states (CWS) and Bell-diagonal states (BDS), independently interacting with dephasing reservoirs. Then, we explore the effects of decreasing the degree of non-Markovianity on their behavior. We show that the presence of both quantum entanglement and quantum discord allow to have a negative Wigner function, in contrast to the result obtained for the closed two-qubit system [F. Siyouri, M. El Baz and Y. Hassouni, The negativity of Wigner function as a measure of quantum correlations, Quantum Inf. Process. 15(10) (2016) 4237–4252]. In fact, we conclude that negativity of Wigner function can be used to capture and quantify the amount of general non-classical correlations in open quantum systems.


2013 ◽  
Vol 11 (01) ◽  
pp. 1350012 ◽  
Author(s):  
HONGTING SONG ◽  
YU PAN ◽  
ZAIRONG XI

Quantum correlations (QC) are generally considered to be the crucial resource for quantum information processing, however, in practice, the inevitable interaction of the quantum systems with the environment can cause decoherence and thus destroy the QC. In this paper, by comparatively studying the model of a two-qubit system in a common environment with and without dynamical control, we show that dynamical control can be exploited to protect QC from being completely destroyed for a long time. For certain product states, the dynamical control can even be used to generate the QC.


2015 ◽  
Vol 13 (06) ◽  
pp. 1550046 ◽  
Author(s):  
Zheng Hu ◽  
Yu-Chen Wang ◽  
Xi-Wen Hou

Two kinds of thermal quantum correlations, measured respectively by quantum discord (QD) and the generalized negativity (GN), are studied for various magnetic fields, couplings, and temperatures in a two-qubit Heisenberg XYZ model. It is shown that QD and GN can exhibit a similar behavior in some regions of magnetic field, coupling, and temperature, while they behave in a contrary manner in other regions. For example, QD may increase with suitable magnetic fields, couplings, and temperature when GN decreases. QD is more robust against temperature than GN, and can reveal a kink at a suitable coupling at finite temperature while GN cannot. Moreover, a nearly unchanged QD or GN can be obtained in a large region of magnetic field, coupling, and temperature. These adjustable QD and GN via the varied magnetic field, coupling, and temperature may have significant applications in quantum information processing.


2012 ◽  
Vol 27 (01n03) ◽  
pp. 1345053 ◽  
Author(s):  
ROSARIO LO FRANCO ◽  
BRUNO BELLOMO ◽  
SABRINA MANISCALCO ◽  
GIUSEPPE COMPAGNO

Knowledge of the dynamical behavior of correlations with no classical counterpart, like entanglement, nonlocal correlations and quantum discord, in open quantum systems is of primary interest because of the possibility to exploit these correlations for quantum information tasks. Here we review some of the most recent results on the dynamics of correlations in bipartite systems embedded in non-Markovian environments that, with their memory effects, influence in a relevant way the system dynamics and appear to be more fundamental than the Markovian ones for practical purposes. Firstly, we review the phenomenon of entanglement revivals in a two-qubit system for both independent environments and a common environment. We then consider the dynamics of quantum discord in non-Markovian dephasing channel and briefly discuss the occurrence of revivals of quantum correlations in classical environments.


Sign in / Sign up

Export Citation Format

Share Document