Measurement-device-independent semiquantum key distribution

2018 ◽  
Vol 16 (02) ◽  
pp. 1850012 ◽  
Author(s):  
Jinjun He ◽  
Qin Li ◽  
Chunhui Wu ◽  
Wai Hong Chan ◽  
Shengyu Zhang

Semiquantum key distribution (SQKD) allows two parties to share a common string when one of them is quantum and the other has rather limited quantum capability. Almost all existing SQKD protocols have been proved to be robust in theory, namely that if an eavesdropper tries to gain information, he will inevitably induce some detectable errors. However, ideal devices do not exist in reality and their imperfection may result in side-channel attacks, which can be used by an adversary to get some information on the secret key string. In this paper, we design a measurement-device-independent SQKD protocol for the first time, which can remove the threat of all detector side-channel attacks and show that it is also robust. In addition, we discuss the possible use of the proposed protocol in real-world applications and in QKD networks.

Entropy ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1083
Author(s):  
Wen-Fei Cao ◽  
Yi-Zheng Zhen ◽  
Yu-Lin Zheng ◽  
Shuai Zhao ◽  
Feihu Xu ◽  
...  

Quantum key distribution (QKD) networks hold promise for sharing secure randomness over multi-partities. Most existing QKD network schemes and demonstrations are based on trusted relays or limited to point-to-point scenario. Here, we propose a flexible and extensible scheme named as open-destination measurement-device-independent QKD network. The scheme enjoys security against untrusted relays and all detector side-channel attacks. Particularly, any users can accomplish key distribution under assistance of others in the network. As an illustration, we show in detail a four-user network where two users establish secure communication and present realistic simulations by taking into account imperfections of both sources and detectors.


Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 571
Author(s):  
Yuang Wang ◽  
Shanhua Zou ◽  
Yun Mao ◽  
Ying Guo

Underwater quantumkey distribution (QKD) is tough but important formodern underwater communications in an insecure environment. It can guarantee secure underwater communication between submarines and enhance safety for critical network nodes. To enhance the performance of continuous-variable quantumkey distribution (CVQKD) underwater in terms ofmaximal transmission distance and secret key rate as well, we adopt measurement-device-independent (MDI) quantum key distribution with the zero-photon catalysis (ZPC) performed at the emitter of one side, which is the ZPC-based MDI-CVQKD. Numerical simulation shows that the ZPC-involved scheme, which is a Gaussian operation in essence, works better than the single photon subtraction (SPS)-involved scheme in the extreme asymmetric case. We find that the transmission of the ZPC-involved scheme is longer than that of the SPS-involved scheme. In addition, we consider the effects of temperature, salinity and solar elevation angle on the system performance in pure seawater. The maximal transmission distance decreases with the increase of temperature and the decrease of sunlight elevation angle, while it changes little over a broad range of salinity


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1691
Author(s):  
Fan Jing ◽  
Weiqi Liu ◽  
Lingzhi Kong ◽  
Chen He

In the continuous variable measurement-device-independent quantum key distribution (CV-MDI-QKD) protocol, both Alice and Bob send quantum states to an untrusted third party, Charlie, for detection through the quantum channel. In this paper, we mainly study the performance of the CV-MDI-QKD system using the noiseless linear amplifier (NLA). The NLA is added to the output of the detector at Charlie’s side. The research results show that NLA can increase the communication distance and secret key rate of the CV-MDI-QKD protocol. Moreover, we find that the more powerful the improvement of the performance with the longer gain of NLA and the optimum gain is given under different conditions.


2019 ◽  
Vol 17 (01) ◽  
pp. 1950005
Author(s):  
Peng Zhang ◽  
Rong-Zhen Jiao

The performance of measurement-device-independent quantum key distribution (MDI-QKD) with different numbers of decoy-state are compared. The statistical fluctuation due to the finite length of data is considered based on the standard statistical analysis. The simulation results show that two-decoy-state method is a nearly optimal estimation in the asymptotic case. In the condition of considering statistical fluctuations, the finite length of raw key will slightly decrease the secret key rate. In all simulation cases, the key rate is maximized by optimizing the intensities of the signals. Our numerical simulation may provide valuable theoretical reference for the practical MDI-QKD experiments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Weilong Wang ◽  
Kiyoshi Tamaki ◽  
Marcos Curty

AbstractMeasurement-device-independent quantum key distribution (MDI-QKD) can remove all detection side-channels from quantum communication systems. The security proofs require, however, that certain assumptions on the sources are satisfied. This includes, for instance, the requirement that there is no information leakage from the transmitters of the senders, which unfortunately is very difficult to guarantee in practice. In this paper we relax this unrealistic assumption by presenting a general formalism to prove the security of MDI-QKD with leaky sources. With this formalism, we analyze the finite-key security of two prominent MDI-QKD schemes—a symmetric three-intensity decoy-state MDI-QKD protocol and a four-intensity decoy-state MDI-QKD protocol—and determine their robustness against information leakage from both the intensity modulator and the phase modulator of the transmitters. Our work shows that MDI-QKD is feasible within a reasonable time frame of signal transmission given that the sources are sufficiently isolated. Thus, it provides an essential reference for experimentalists to ensure the security of implementations of MDI-QKD in the presence of information leakage.


2020 ◽  
Vol 125 (26) ◽  
Author(s):  
Yuan Cao ◽  
Yu-Huai Li ◽  
Kui-Xing Yang ◽  
Yang-Fan Jiang ◽  
Shuang-Lin Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document