Human-Like Motion Planning for a 4-DOF Anthropomorphic Arm Based on Arm’s Inherent Characteristics

2017 ◽  
Vol 14 (04) ◽  
pp. 1750005 ◽  
Author(s):  
Hongcheng Xu ◽  
Xilun Ding

Human-likeness of an anthropomorphic arm is mainly exhibited by the main arm consisting of shoulder and elbow joints as well as upper arm and forearm. In this paper, we focus on a 4-DOF anthropomorphic arm and propose a novel approach to generate human-like motion, considering human physiological and psychological factors. According to the features of musculoskeletal system of human upper limb, the 3-DOF shoulder joint is simplified with two rotations: one is about a fixed axis through shoulder center and the other is about the axis of humerus. In addition with elbow joint and a special rotation about the shoulder-wrist line, they constitute the basic motion primitives (MPs) which are macroscopic compared with the joint space but microscopic compared with the Cartesian space. Therefore, planning motion based on MPs combines intuitiveness and flexibility. Two basic kinds of motion planning, point-to-point motion planning and linear trajectory planning, are conducted. The different psychological concerns, i.e., predicting the next step of configuration and relieving the brain burden, are taken into account. Simulations are performed to verify the feasibility and validation of the proposed approach. Comparisons between simulation results with the proposed method and that with traditional joint and Cartesian space methods prove the improvement in human-likeness.

2005 ◽  
Vol 38 (1) ◽  
pp. 187-192
Author(s):  
Gianluca Antonelli ◽  
Stefano Chiaverini ◽  
Marco Palladino ◽  
Gian Paolo Gerio ◽  
Gerardo Renga

Author(s):  
Xin-Jun Liu ◽  
Zhao Gong ◽  
Fugui Xie ◽  
Shuzhan Shentu

In this paper, a mobile robot named VicRoB with 6 degrees of freedom (DOFs) driven by three tracked vehicles is designed and analyzed. The robot employs a 3-PPSR parallel configuration. The scheme of the mechanism and the inverse kinematic solution are given. A path planning method of a single tracked vehicle and a coordinated motion planning of three tracked vehicles are proposed. The mechanical structure and the electrical architecture of VicRoB prototype are illustrated. VicRoB can achieve the point-to-point motion mode and the continuous motion mode with employing the motion planning method. The orientation precision of VicRoB is measured in a series of motion experiments, which verifies the feasibility of the motion planning method. This work provides a kinematic basis for the orientation closed loop control of VicRoB whether it works on flat or rough road.


Author(s):  
Damien Chablat ◽  
Philippe Wenger

Abstract The goal of this paper is to define the n-connected regions in the Cartesian workspace of fully-parallel manipulators, i.e. the maximal regions where it is possible to execute point-to-point motions. The manipulators considered in this study may have multiple direct and inverse kinematic solutions. The N-connected regions are characterized by projection, onto the Cartesian workspace, of the connected components of the reachable configuration space defined in the Cartesian product of the Cartesian space by the joint space. Generalized octree models are used for the construction of all spaces. This study is illustrated with a simple planar fully-parallel manipulator.


2003 ◽  
Vol 125 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Yuefa Fang ◽  
Lung-Wen Tsai

When a serial manipulator is at a singular configuration, the Jacobian matrix will lose its full rank causing the manipulator to lose one or more degrees of freedom. This paper presents a novel approach to model the manipulator kinematics and solve for feasible motions of a manipulator at singular configurations such that the precise path tracking of a manipulator at such configurations is possible. The joint screw linear dependency is determined by using known line varieties so that not only the singular configurations of a manipulator can be identified but also the dependent joint screws can be determined. Feasible motions in Cartesian space are identified by using the theory of reciprocal screws and the resulting equations of constraint. The manipulator first-order kinematics is then modeled by isolating the linearly dependent columns and rows of the Jacobian matrix such that the mapping between the feasible motions in Cartesian space and the joint space motions can be uniquely determined. Finally, a numerical example is used to demonstrate the feasibility of the approach. The simulation results show that a PUMA-type robot can successfully track a path that is singular at all times.


2014 ◽  
Vol 543-547 ◽  
pp. 1397-1400 ◽  
Author(s):  
Wen Zhe Wang ◽  
Shi Yue Liu ◽  
Qing Bo Geng ◽  
Qing Fei

This paper developed a 6-DOF (degree of freedom) PC-Based robotic arm system. The system mainly include in software platform and servo control card, servo control card based on microcontroller STC12C5A60S2 was designed to drive the servomotor connected with each joint of robot. The software was implemented by combining MFC with OpenGL. By using the OpenGL functions, the software is able to draw and simulate the 3D kinematic scheme of the robot, it also provides 3D motion planning simulation feature. With the help of simulation in the GUI, users can visualize the manipulator motion planning. Furthermore, user also can control the real robotic arm through this software. Finally, point-to-point motion and continuous path motion are all tested in simulation and real robot control. The entire system has been successfully implemented.


Author(s):  
Chin Pei Tang ◽  
Patrick T. Miller ◽  
Venkat N. Krovi ◽  
Ji-Chul Ryu ◽  
Sunil K. Agrawal

This paper presents an integrated motion planning and control framework for a nonholonomic wheeled mobile manipulator (WMM) system taking advantage of the (differential) flatness property. We first develop the kinematic model of the system and analyze its flatness properties. Subsequently, a statically feedback linearizable system description is developed by appropriately choosing the flat outputs. Motion-planning can now be achieved by polynomial curve fitting to satisfying the terminal conditions in the flat output space while control design reduces to a pole-placement problem for a linear system. A case study of point-to-point motion is considered to study the effectiveness of pose stabilization in the WMM. The simulation and experimental results highlight the ease-of-implementation of proposed method for online real-time integrated motion-planning/control within a hardware-in-the-loop (HIL) electro-mechanical testing.


Robotica ◽  
2002 ◽  
Vol 20 (3) ◽  
pp. 269-280 ◽  
Author(s):  
Shigang Yue ◽  
Dominik Henrich ◽  
W. L. Xu ◽  
S. K. Tso

The paper focuses on the problem of point-to-point trajectory planning for flexible redundant robot manipulators (FRM) in joint space. Compared with irredundant flexible manipulators, a FRM possesses additional possibilities during point-to-point trajectory planning due to its kinematics redundancy. A trajectory planning method to minimize vibration and/or executing time of a point-to-point motion is presented for FRMs based on Genetic Algorithms (GAs). Kinematics redundancy is integrated into the presented method as planning variables. Quadrinomial and quintic polynomial are used to describe the segments that connect the initial, intermediate, and final points in joint space. The trajectory planning of FRM is formulated as a problem of optimization with constraints. A planar FRM with three flexible links is used in simulation. Case studies show that the method is applicable.


Sign in / Sign up

Export Citation Format

Share Document