scholarly journals Capture Steps: Robust Walking for Humanoid Robots

2019 ◽  
Vol 16 (06) ◽  
pp. 1950032 ◽  
Author(s):  
Marcell Missura ◽  
Maren Bennewitz ◽  
Sven Behnke

Stable bipedal walking is a key prerequisite for humanoid robots to reach their potential of being versatile helpers in our everyday environments. Bipedal walking is, however, a complex motion that requires the coordination of many degrees of freedom while it is also inherently unstable and sensitive to disturbances. The balance of a walking biped has to be constantly maintained. The most effective ways of controlling balance are well timed and placed recovery steps — capture steps — that absorb the expense momentum gained from a push or a stumble. We present a bipedal gait generation framework that utilizes step timing and foot placement techniques in order to recover the balance of a biped even after strong disturbances. Our framework modifies the next footstep location instantly when responding to a disturbance and generates controllable omnidirectional walking using only very little sensing and computational power. We exploit the open-loop stability of a central pattern generated gait to fit a linear inverted pendulum model (LIPM) to the observed center of mass (CoM) trajectory. Then, we use the fitted model to predict suitable footstep locations and timings in order to maintain balance while following a target walking velocity. Our experiments show qualitative and statistical evidence of one of the strongest push-recovery capabilities among humanoid robots to date.

2016 ◽  
Vol 13 (02) ◽  
pp. 1550041 ◽  
Author(s):  
Juan Alejandro Castano ◽  
Zhibin Li ◽  
Chengxu Zhou ◽  
Nikos Tsagarakis ◽  
Darwin Caldwell

This paper presents a novel online walking control that replans the gait pattern based on our proposed foot placement control using the actual center of mass (COM) state feedback. The analytic solution of foot placement is formulated based on the linear inverted pendulum model (LIPM) to recover the walking velocity and to reject external disturbances. The foot placement control predicts where and when to place the foothold in order to modulate the gait given the desired gait parameters. The zero moment point (ZMP) references and foot trajectories are replanned online according to the updated foothold prediction. Hence, only desired gait parameters are required instead of predefined or fixed gait patterns. Given the new ZMP references, the extended prediction self-adaptive control (EPSAC) approach to model predictive control (MPC) is used to minimize the ZMP response errors considering the acceleration constraints. Furthermore, to ensure smooth gait transitions, the conditions for the gait initiation and termination are also presented. The effectiveness of the presented gait control is validated by extensive disturbance rejection studies ranging from single mass simulation to a full body humanoid robot COMAN in a physics based simulator. The versatility is demonstrated by the control of reactive gaits as well as reactive stepping from standing posture. We present the data of the applied disturbances, the prediction of sagittal/lateral foot placements, the replanning of the foot/ZMP trajectories, and the COM responses.


2018 ◽  
Vol 8 (8) ◽  
pp. 1257 ◽  
Author(s):  
Tianqi Yang ◽  
Weimin Zhang ◽  
Xuechao Chen ◽  
Zhangguo Yu ◽  
Libo Meng ◽  
...  

The most important feature of this paper is to transform the complex motion of robot turning into a simple translational motion, thus simplifying the dynamic model. Compared with the method that generates a center of mass (COM) trajectory directly by the inverted pendulum model, this method is more precise. The non-inertial reference is introduced in the turning walk. This method can translate the turning walk into a straight-line walk when the inertial forces act on the robot. The dynamics of the robot model, called linear inverted pendulum (LIP), are changed and improved dynamics are derived to make them apply to the turning walk model. Then, we expend the new LIP model and control the zero moment point (ZMP) to guarantee the stability of the unstable parts of this model in order to generate a stable COM trajectory. We present simulation results for the improved LIP dynamics and verify the stability of the robot turning.


In the coming decades, humanoid robots will play a rising role in society. The present article discusses their walking control and obstacle avoidance on uneven terrain using enhanced spring-loaded inverted pendulum model (ESLIP). The SLIP model is enhanced by tuning it with an adaptive particle swarm optimization (APSO) approach. It helps the humanoid robot to reach closer to the obstacles in order to optimize the turning angle to optimize the path length. The desired trajectory, along with the sensory data, is provided to the SLIP model, which creates compatible COM (center of mass) dynamics for stable walking. This output is fed to APSO as input, which adjusts the placement of the foot during interaction with uneven surfaces and obstacles. It provides an optimum turning angle for shunning the obstacles and ensures the shortest path length. Simulation has been carried out in a 3D simulator based on the proposed controller and SLIP controller in uneven terrain.


Author(s):  
John H.G Macdonald

On its opening day, the London Millennium Bridge (LMB) experienced unexpected large amplitude lateral vibrations due to crowd loading. This form of pedestrian–structure interaction has since been identified on several other bridges of various structural forms. The mechanism has generally been attributed to ‘pedestrian synchronous lateral excitation’ or ‘pedestrian lock-in’. However, some of the more recent site measurements have shown a lack of evidence of pedestrian synchronization, at least at the onset of the behaviour. This paper considers a simple model of human balance from the biomechanics field—the inverted pendulum model—for which the most effective means of lateral stabilization is by the control of the position, rather than the timing, of foot placement. The same balance strategy as for normal walking on a stationary surface is applied to walking on a laterally oscillating bridge. As a result, without altering their pacing frequency, averaged over a large number of cycles, the pedestrian effectively acts as a negative (or positive) damper to the bridge motion, which may be at a different frequency. This is in agreement with the empirical model developed by Arup from the measurements on the LMB, leading to divergent amplitude vibrations above a critical number of pedestrians.


Sign in / Sign up

Export Citation Format

Share Document