SENSORY SIGNAL PROCESSING ISSUES IN A TELEMEDICINE SYSTEM

2013 ◽  
Vol 09 (02) ◽  
pp. 1350013
Author(s):  
CLARENCE W. DE SILVA ◽  
SHAN XIAO ◽  
MAOQING LI ◽  
CHERYL N. DE SILVA

A telemedicine system will provide sustainable, comprehensive, low-cost, fast, private, and convenient access to medical consultation and diagnosis for patients from remote locations. The telemedicine system addressed in this paper consists of a sensor jacket, which is worn by the patient for medical monitoring. The signals sensed through the jacket are processed and transmitted through a public telecommunication link, to a medical professional in a hospital at distance. The medical professional interacts with the patient through audio and video links, and simultaneously examines the data transmitted by the monitoring system. Medical assessment, diagnosis, and prescription are carried out on this basis. Sensing and signal processing are paramount to providing the patient data to the medical professional in an accurate and effective manner. This paper presents some relevant issues and techniques. Specific examples of electrocardiograms and respiratory signals are provided to illustrate the applicable signal conditioning approaches. Results are presented to demonstrate the feasibility and the effectiveness of these methods.

2014 ◽  
Vol 687-691 ◽  
pp. 990-993
Author(s):  
Lian Wang ◽  
Geng Guo Cheng

With the development of information and communication technology and the advent of new technologies including wireless communication, smart handheld mobile terminals and wearable medical sensor detection technology, mobile medical care is facing its development opportunity. In this context, our medical monitoring system combines wireless communication technology with wearable medical sensor and designs a remote medical monitoring of multiple physiological parameters. With the support of Android devices, this system offers medical reports retrieval, online diagnosis and health guidelines. It provides users with multi-functional, instant, real-time monitoring and interactive medical services in a high efficient low cost way, which enables remote interrogation and medical care become possible.


Author(s):  
P.Venu Gopala Rao ◽  
Eslavath Raja ◽  
Ramakrishna Gandi ◽  
G. Ravi Kumar

IoT (Internet of Things) has become most significant area of research to design an efficient data enabled services with the help of sensors. In this paper, a low-cost system design for e-healthcare service to process the sensitive health data is presented. Vital signs of the human body are measured from the patient location and shared with a registered medical professional for consultation. Temperature and heart rate are the major signals obtained from a patient for the initial build of the system. Data is sent to a cloud server where processing and analysis is provided for the medical professional to analyze. Secure transmission and dissemination of data through the cloud server is provided with an authentication system and the patient could be able to track his data through a smart phone on connecting to the cloud server. A prototype of the system along with its design parameters has been discussed.


Author(s):  
Ifeoma V. Ngonadi

The Internet of Things (IoT) is a system of interrelated computing devices, mechanical and digital machines, objects, animals or people that are provided with unique identifiers and the ability to transfer data over a network without requiring human-to-human or human-to-computer interaction. Remote patient monitoring enables the monitoring of patients’ vital signs outside the conventional clinical settings which may increase access to care and decrease healthcare delivery costs. This paper focuses on implementing internet of things in a remote patient medical monitoring system. This was achieved by writing two computer applications in java in which one simulates a mobile phone called the Intelligent Personal Digital Assistant (IPDA) which uses a data structure that includes age, smoking habits and alcohol intake to simulate readings for blood pressure, pulse rate and mean arterial pressure continuously every twenty five which it sends to the server. The second java application protects the patients’ medical records as they travel through the networks by employing a symmetric key encryption algorithm which encrypts the patients’ medical records as they are generated and can only be decrypted in the server only by authorized personnel. The result of this research work is the implementation of internet of things in a remote patient medical monitoring system where patients’ vital signs are generated and transferred to the server continuously without human intervention.


Author(s):  
I Made Oka Widyantara ◽  
I Made Dwi Asana Putra ◽  
Ida Bagus Putu Adnyana

This paper intends to explain the development of Coastal Video Monitoring System (CoViMoS) with the main characteristics including low-cost and easy implementation. CoViMoS characteristics have been realized using the device IP camera for video image acquisition, and development of software applications with the main features including detection of shoreline and it changes are automatically. This capability was based on segmentation and classification techniques based on data mining. Detection of shoreline is done by segmenting a video image of the beach, to get a cluster of objects, namely land, sea and sky, using Self Organizing Map (SOM) algorithms. The mechanism of classification is done using K-Nearest Neighbor (K-NN) algorithms to provide the class labels to objects that have been generated on the segmentation process. Furthermore, the classification of land used as a reference object in the detection of costline. Implementation CoViMoS system for monitoring systems in Cucukan Beach, Gianyar regency, have shown that the developed system is able to detect the shoreline and its changes automatically.


2020 ◽  
pp. 1-1
Author(s):  
Abu Ilius Faisal ◽  
Sumit Majumder ◽  
Ryan Scott ◽  
Tapas Mondal ◽  
David Cowan ◽  
...  

Author(s):  
Nusrat Binta Nizam ◽  
Tohfatul Jinan ◽  
Wahida Binte Naz Aurthy ◽  
Md. Rakib Hossen ◽  
Jahid Ferdous

Landslides ◽  
2021 ◽  
Author(s):  
Lorenzo Brezzi ◽  
Alberto Bisson ◽  
Davide Pasa ◽  
Simonetta Cola

AbstractA large number of landslides occur in North-Eastern Italy during every rainy period due to the particular hydrogeological conditions of this area. Even if there are no casualties, the economic losses are often significant, and municipalities frequently do not have sufficient financial resources to repair the damage and stabilize all the unstable slopes. In this regard, the research for more economically sustainable solutions is a crucial challenge. Floating composite anchors are an innovative and low-cost technique set up for slope stabilization: it consists in the use of passive sub-horizontal reinforcements, obtained by coupling a traditional self-drilling bar with some tendons cemented inside it. This work concerns the application of this technique according to the observational method described within the Italian and European technical codes and mainly recommended for the design of geotechnical works, especially when performed in highly uncertain site conditions. The observational method prescribes designing an intervention and, at the same time, using a monitoring system in order to correct and adapt the project during realization of the works on the basis of new data acquired while on site. The case study is the landslide of Cischele, a medium landslide which occurred in 2010 after an exceptional heavy rainy period. In 2015, some floating composite anchors were installed to slow down the movement, even if, due to a limited budget, they were not enough to ensure the complete stabilization of the slope. Thanks to a monitoring system installed in the meantime, it is now possible to have a comparison between the site conditions before and after the intervention. This allows the evaluation of benefits achieved with the reinforcements and, at the same time, the assessment of additional improvements. Two stabilization scenarios are studied through an FE model: the first includes the stabilization system built in 2015, while the second evaluates a new solution proposed to further increase the slope stability.


Sign in / Sign up

Export Citation Format

Share Document