SPECIAL PROJECTIVE ALGEBRA OF RANDERS METRICS OF CONSTANT S-CURVATURE

2012 ◽  
Vol 09 (04) ◽  
pp. 1250034 ◽  
Author(s):  
M. RAFIE-RAD

The collection of all projective vector fields on a Finsler space (M, F) is a finite-dimensional Lie algebra with respect to the usual Lie bracket, called the projective algebra. A specific Lie sub-algebra of projective algebra of Randers spaces (called the special projective algebra) of non-zero constant S-curvature is studied and it is proved that its dimension is at most [Formula: see text]. Moreover, a local characterization of Randers spaces whose special projective algebra has maximum dimension is established. The results uncover somehow the complexity of projective Finsler geometry versus Riemannian geometry.

2013 ◽  
Vol 10 (10) ◽  
pp. 1350048 ◽  
Author(s):  
BAHMAN REZAEI ◽  
MEHDI RAFIE-RAD

In this paper, we study projective algebra, p(M, F), of special (α, β)-metrics. The projective algebra of a Finsler space is a finite-dimensional Lie algebra with respect to the usual Lie bracket. We characterize p(M, F) of Matsumoto and square metrics of isotropic S-curvature of dimension n ≥ 3 as a certain Lie sub-algebra of the Killing algebra k(M, α). We also show that F has a maximum projective symmetry if and only if F either is a Riemannian metric of constant sectional curvature or locally Minkowskian.


2020 ◽  
Vol 17 (02) ◽  
pp. 2050019
Author(s):  
Gauree Shanker ◽  
Sarita Rani

The study of curvature properties of homogeneous Finsler spaces with [Formula: see text]-metrics is one of the central problems in Riemann–Finsler geometry. In this paper, the existence of invariant vector fields on a homogeneous Finsler space with square metric is proved. Further, an explicit formula for [Formula: see text]-curvature of a homogeneous Finsler space with square metric is established. Finally, using the formula of [Formula: see text]-curvature, the mean Berwald curvature of aforesaid [Formula: see text]-metric is calculated.


Author(s):  
Sarita Rani ◽  
Gauree Shanker

The study of curvature properties of homogeneous Finsler spaces with $(\alpha, \beta)$-metrics is one of the central problems in Riemann-Finsler geometry. In the present paper, the existence of invariant vector fields on a homogeneous Finsler space with Randers changed square metric has been proved. Further, an explicit formula for $S$-curvature of Randers changed square metric has been established. Finally, using the formula of $S$-curvature, the mean Berwald curvature of afore said $(\alpha, \beta)$-metric has been calculated. 


1999 ◽  
Vol 6 (4) ◽  
pp. 323-334
Author(s):  
A. Kharazishvili

Abstract We give a characterization of all those groups of isometric transformations of a finite-dimensional Euclidean space, for which an analogue of the classical Vitali theorem [Sul problema della misura dei gruppi di punti di una retta, 1905] holds true. This characterization is formulated in purely geometrical terms.


Author(s):  
Talat Körpınar ◽  
Yasin Ünlütürk

AbstractIn this research, we study bienergy and biangles of moving particles lying on the surface of Lorentzian 3-space by using their energy and angle values. We present the geometrical characterization of bienergy of the particle in Darboux vector fields depending on surface. We also give the relationship between bienergy of the surface curve and bienergy of the elastic surface curve. We conclude the paper by providing bienergy-curve graphics for different cases.


2000 ◽  
Vol 61 (2) ◽  
pp. 1382-1385 ◽  
Author(s):  
Matthias Meixner ◽  
Scott M. Zoldi ◽  
Sumit Bose ◽  
Eckehard Schöll

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Emrah Dokur ◽  
Salim Ceyhan ◽  
Mehmet Kurban

To construct the geometry in nonflat spaces in order to understand nature has great importance in terms of applied science. Finsler geometry allows accurate modeling and describing ability for asymmetric structures in this application area. In this paper, two-dimensional Finsler space metric function is obtained for Weibull distribution which is used in many applications in this area such as wind speed modeling. The metric definition for two-parameter Weibull probability density function which has shape (k) and scale (c) parameters in two-dimensional Finsler space is realized using a different approach by Finsler geometry. In addition, new probability and cumulative probability density functions based on Finsler geometry are proposed which can be used in many real world applications. For future studies, it is aimed at proposing more accurate models by using this novel approach than the models which have two-parameter Weibull probability density function, especially used for determination of wind energy potential of a region.


2018 ◽  
Vol 61 (1) ◽  
pp. 166-173
Author(s):  
Cleto B. Miranda-Neto

AbstractIn this note we prove the following surprising characterization: if X ⊂ is an (embedded, non-empty, proper) algebraic variety deûned over a field k of characteristic zero, then X is a hypersurface if and only if the module of logarithmic vector fields of X is a reflexive -module. As a consequence of this result, we derive that if is a free -module, which is shown to be equivalent to the freeness of the t-th exterior power of for some (in fact, any) t ≤ n, then necessarily X is a Saito free divisor.


2017 ◽  
Vol 16 (10) ◽  
pp. 1750200 ◽  
Author(s):  
László Székelyhidi ◽  
Bettina Wilkens

In 2004, a counterexample was given for a 1965 result of R. J. Elliott claiming that discrete spectral synthesis holds on every Abelian group. Since then the investigation of discrete spectral analysis and synthesis has gained traction. Characterizations of the Abelian groups that possess spectral analysis and spectral synthesis, respectively, were published in 2005. A characterization of the varieties on discrete Abelian groups enjoying spectral synthesis is still missing. We present a ring theoretical approach to the issue. In particular, we provide a generalization of the Principal Ideal Theorem on discrete Abelian groups.


Sign in / Sign up

Export Citation Format

Share Document