ON THE PROJECTIVE ALGEBRA OF SOME (α, β)-METRICS OF ISOTROPIC S-CURVATURE

2013 ◽  
Vol 10 (10) ◽  
pp. 1350048 ◽  
Author(s):  
BAHMAN REZAEI ◽  
MEHDI RAFIE-RAD

In this paper, we study projective algebra, p(M, F), of special (α, β)-metrics. The projective algebra of a Finsler space is a finite-dimensional Lie algebra with respect to the usual Lie bracket. We characterize p(M, F) of Matsumoto and square metrics of isotropic S-curvature of dimension n ≥ 3 as a certain Lie sub-algebra of the Killing algebra k(M, α). We also show that F has a maximum projective symmetry if and only if F either is a Riemannian metric of constant sectional curvature or locally Minkowskian.

2012 ◽  
Vol 09 (04) ◽  
pp. 1250034 ◽  
Author(s):  
M. RAFIE-RAD

The collection of all projective vector fields on a Finsler space (M, F) is a finite-dimensional Lie algebra with respect to the usual Lie bracket, called the projective algebra. A specific Lie sub-algebra of projective algebra of Randers spaces (called the special projective algebra) of non-zero constant S-curvature is studied and it is proved that its dimension is at most [Formula: see text]. Moreover, a local characterization of Randers spaces whose special projective algebra has maximum dimension is established. The results uncover somehow the complexity of projective Finsler geometry versus Riemannian geometry.


2007 ◽  
Vol 5 ◽  
pp. 195-200
Author(s):  
A.V. Zhiber ◽  
O.S. Kostrigina

In the paper it is shown that the two-dimensional dynamical system of equations is Darboux integrable if and only if its characteristic Lie algebra is finite-dimensional. The class of systems having a full set of fist and second order integrals is described.


Author(s):  
MÁTYÁS DOMOKOS ◽  
VESSELIN DRENSKY

AbstractThe problem of finding generators of the subalgebra of invariants under the action of a group of automorphisms of a finite-dimensional Lie algebra on its universal enveloping algebra is reduced to finding homogeneous generators of the same group acting on the symmetric tensor algebra of the Lie algebra. This process is applied to prove a constructive Hilbert–Nagata Theorem (including degree bounds) for the algebra of invariants in a Lie nilpotent relatively free associative algebra endowed with an action induced by a representation of a reductive group.


Author(s):  
DMITRI I. PANYUSHEV ◽  
OKSANA S. YAKIMOVA

AbstractLet 𝔮 be a finite-dimensional Lie algebra. The symmetric algebra (𝔮) is equipped with the standard Lie–Poisson bracket. In this paper, we elaborate on a surprising observation that one naturally associates the second compatible Poisson bracket on (𝔮) to any finite order automorphism ϑ of 𝔮. We study related Poisson-commutative subalgebras (𝔮; ϑ) of 𝒮(𝔮) and associated Lie algebra contractions of 𝔮. To obtain substantial results, we have to assume that 𝔮 = 𝔤 is semisimple. Then we can use Vinberg’s theory of ϑ-groups and the machinery of Invariant Theory.If 𝔤 = 𝔥⊕⋯⊕𝔥 (sum of k copies), where 𝔥 is simple, and ϑ is the cyclic permutation, then we prove that the corresponding Poisson-commutative subalgebra (𝔮; ϑ) is polynomial and maximal. Furthermore, we quantise this (𝔤; ϑ) using a Gaudin subalgebra in the enveloping algebra 𝒰(𝔤).


2013 ◽  
Vol 89 (2) ◽  
pp. 234-242 ◽  
Author(s):  
DONALD W. BARNES

AbstractFor a Lie algebra $L$ over an algebraically closed field $F$ of nonzero characteristic, every finite dimensional $L$-module can be decomposed into a direct sum of submodules such that all composition factors of a summand have the same character. Using the concept of a character cluster, this result is generalised to fields which are not algebraically closed. Also, it is shown that if the soluble Lie algebra $L$ is in the saturated formation $\mathfrak{F}$ and if $V, W$ are irreducible $L$-modules with the same cluster and the $p$-operation vanishes on the centre of the $p$-envelope used, then $V, W$ are either both $\mathfrak{F}$-central or both $\mathfrak{F}$-eccentric. Clusters are used to generalise the construction of induced modules.


2018 ◽  
Vol 18 (3) ◽  
pp. 285-287
Author(s):  
Xiaoyang Chen

AbstractLet X bea Stein manifold with an anti-holomorphic involution τ and nonempty compact fixed point set Xτ. We show that X is diffeomorphic to the normal bundle of Xτ provided that X admits a complete Riemannian metric g of nonnegative sectional curvature such that τ*g = g.


Author(s):  
Jon F. Carlson ◽  
Eric M. Friedlander ◽  
Julia Pevtsova

AbstractWe introduce and investigate a functorial construction which associates coherent sheaves to finite dimensional (restricted) representations of a restricted Lie algebra


2007 ◽  
Vol 17 (03) ◽  
pp. 527-555 ◽  
Author(s):  
YOU'AN CAO ◽  
DEZHI JIANG ◽  
JUNYING WANG

Let L be a finite-dimensional complex simple Lie algebra, Lℤ be the ℤ-span of a Chevalley basis of L and LR = R⊗ℤLℤ be a Chevalley algebra of type L over a commutative ring R. Let [Formula: see text] be the nilpotent subalgebra of LR spanned by the root vectors associated with positive roots. The aim of this paper is to determine the automorphism group of [Formula: see text].


2018 ◽  
Vol 62 (3) ◽  
pp. 509-523
Author(s):  
Libing Huang ◽  
Xiaohuan Mo

AbstractIn this paper, we study a class of homogeneous Finsler metrics of vanishing $S$-curvature on a $(4n+3)$-dimensional sphere. We find a second order ordinary differential equation that characterizes Einstein metrics with constant Ricci curvature $1$ in this class. Using this equation we show that there are infinitely many homogeneous Einstein metrics on $S^{4n+3}$ of constant Ricci curvature $1$ and vanishing $S$-curvature. They contain the canonical metric on $S^{4n+3}$ of constant sectional curvature $1$ and the Einstein metric of non-constant sectional curvature given by Jensen in 1973.


Author(s):  
María Julia Redondo ◽  
Lucrecia Román

We construct comparison morphisms between two well-known projective resolutions of a monomial algebra $A$: the bar resolution $\operatorname{\mathbb{Bar}} A$ and Bardzell's resolution $\operatorname{\mathbb{Ap}} A$; the first one is used to define the cup product and the Lie bracket on the Hochschild cohomology $\operatorname{HH} ^*(A)$ and the second one has been shown to be an efficient tool for computation of these cohomology groups. The constructed comparison morphisms allow us to show that the cup product restricted to even degrees of the Hochschild cohomology has a very simple description. Moreover, for $A= \mathbb{k} Q/I$ a monomial algebra such that $\dim_ \mathbb{k} e_i A e_j = 1$ whenever there exists an arrow $\alpha: i \to j \in Q_1$, we describe the Lie action of the Lie algebra $\operatorname{HH}^1(A)$ on $\operatorname{HH}^{\ast} (A)$.


Sign in / Sign up

Export Citation Format

Share Document