scholarly journals On the structure and applications of the Bondi–Metzner–Sachs group

2018 ◽  
Vol 15 (02) ◽  
pp. 1830002 ◽  
Author(s):  
Francesco Alessio ◽  
Giampiero Esposito

This work is a pedagogical review dedicated to a modern description of the Bondi–Metzner–Sachs (BMS) group. Minkowski space-time has an interesting and useful group of isometries, but, for a generic space-time, the isometry group is simply the identity and hence provides no significant informations. Yet symmetry groups have important role to play in physics; in particular, the Poincaré group describing the isometries of Minkowski space-time plays a role in the standard definitions of energy-momentum and angular-momentum. For this reason alone it would seem to be important to look for a generalization of the concept of isometry group that can apply in a useful way to suitable curved space-times. The curved space-times that will be taken into account are the ones that suitably approach, at infinity, Minkowski space-time. In particular we will focus on asymptotically flat space-times. In this work, the concept of asymptotic symmetry group of those space-times will be studied. In the first two sections we derive the asymptotic group following the classical approach which was basically developed by Bondi, van den Burg, Metzner and Sachs. This is essentially the group of transformations between coordinate systems of a certain type in asymptotically flat space-times. In the third section the conformal method and the notion of “asymptotic simplicity” are introduced, following mainly the works of Penrose. This section prepares us for another derivation of the BMS group which will involve the conformal structure, and is thus more geometrical and fundamental. In the subsequent sections we discuss the properties of the BMS group, e.g. its algebra and the possibility to obtain as its subgroup the Poincaré group, as we may expect. The paper ends with a review of the BMS invariance properties of classical gravitational scattering discovered by Strominger, that are finding application to black hole physics and quantum gravity in the literature.

Author(s):  
John W. Schutz

AbstractMinkowski space-time is specified with respect to a single coordinate frame by the set of timelike lines. Isotropy mappings are defined as automorphisms which leave the events of one timelike line invariant. We demonstrate the existence of two special types of isotropy mappings. The first type of isotropy mapping induce orthogonal transformations in position space. Mappings of the second type can be composed to generate Lorentz boosts. It is shown that isotropy mappings generate the orthochronous Poincaré group of motions. The set of isotropy mappings then maps the single assumed coordinate frame onto a set of coordinate frames related by transformations of the orthochronous Poincaré group.


Universe ◽  
2020 ◽  
Vol 6 (5) ◽  
pp. 66 ◽  
Author(s):  
Jean-Pierre Gazeau

An explanation of the origin of dark matter is suggested in this work. The argument is based on symmetry considerations about the concept of mass. In Wigner’s view, the rest mass and the spin of a free elementary particle in flat space-time are the two invariants that characterize the associated unitary irreducible representation of the Poincaré group. The Poincaré group has two and only two deformations with maximal symmetry. They describe respectively the de Sitter (dS) and anti-de Sitter (AdS) kinematic symmetries. Analogously to their shared flat space-time limit, two invariants, spin and energy scale for de Sitter and rest energy for anti-de Sitter, characterize the unitary irreducible representation associated with dS and AdS elementary systems, respectively. While the dS energy scale is a simple deformation of the Poincaré rest energy and so has a purely mass nature, AdS rest energy is the sum of a purely mass component and a kind of zero-point energy derived from the curvature. An analysis based on recent estimates on the chemical freeze-out temperature marking in Early Universe the phase transition quark–gluon plasma epoch to the hadron epoch supports the guess that dark matter energy might originate from an effective AdS curvature energy.


1995 ◽  
Vol 10 (27) ◽  
pp. 3901-3919 ◽  
Author(s):  
G.G. HARTWELL ◽  
P.S. HOWE

A family of harmonic superspaces associated with four-dimensional Minkowski space-time is described. Applications are made to free massless supermultiplets, invariant integrals and super-Yang-Mills theory. Generalization to curved space-times is performed, with emphasis on conformal supergravities.


1997 ◽  
Vol 50 (5) ◽  
pp. 851 ◽  
Author(s):  
David Tilbrook

We examine space-times which are described by a metric of the form ds2 = V2(X)dT2 - U2 (X)dX2 - dY2 - dZ2 in which V =V (X) and U = U(X) are continuous functions of X only and which admit diffeomorphisms into Minkowski space-time. It is shown that such space-times are associated with rigidly accelerating frames of reference by appeal to the notion of a fundamental observer. The condition for the existence of the diffeomorphism is derived from first principles and some special cases of coordinates are discussed.


1992 ◽  
Vol 07 (25) ◽  
pp. 2317-2324 ◽  
Author(s):  
A. Z. CAPRI ◽  
S. M. ROY

We prove that for any (1 + 1)-dimensional globally hyperbolic space-time it is possible to define an instant of time as a special space-like geodesic which is independent of the coordinates chosen. This definition follows uniquely from the requirement of validity of Poincaré symmetry in an infinitesimal neighborhood of the hypersurface of instantaneity. The generator associated with time translation then selects the direction of time. This fact permits unambiguous field quantization of this surface. For flat space-time the corresponding time and vacuum coincide with those of Minkowski space-time. We apply these results to static and Robertson-Walker space-times.


2000 ◽  
Vol 15 (26) ◽  
pp. 4141-4162 ◽  
Author(s):  
G. I. GOMERO ◽  
M. J. REBOUÇAS ◽  
A. F. F. TEIXEIRA ◽  
A. BERNUI

We study the role played by multiply-connectedness in the time evolution of the energy E(t) of a radiating system that lies in static flat space–time manifolds ℳ4 whose t= const spacelike sections ℳ3 are compact in at least one spatial direction. The radiation reaction equation of the radiating source is derived for the case where ℳ3 has any nontrivial flat topology, and an exact solution is obtained. We show that the behavior of the radiating energy E(t) changes remarkably from exponential damping, when the system lies in ℛ3, to a reverberation pattern (with discontinuities in the derivative Ė(t) and a set of relative minima and maxima) followed by a growth of E(t), when ℳ3 is endowed with any one of the 17 multiply-connected flat topologies. It emerges from this result that the compactness in at least one spatial direction of Minkowski space–time is sufficient to induce this type of topological reverberation, making clear that topological fragilities can arise not only in the usual cosmological modelling, but also in ordinary flat space–time manifolds. An explicit solution of the radiation reaction equation for the case where [Formula: see text] is discussed in detail, and graphs which reveal how the energy varies with the time are presented and analyzed.


The self force of a charged particle is studied in a curved space-time by means of a generalization of a surface integral formalism developed by Penrose. The formalism is applied to a number of problems including an investigation of the differences between electromagnetic field theory and action-at-a-distance theories in a curved space-time, and also to an investigation of the Newman-Penrose conserved quantities in asymptotically flat space-times.


2016 ◽  
Vol 46 (1) ◽  
pp. 159-170 ◽  
Author(s):  
Emilija Nešović ◽  
Milica Grbović

Sign in / Sign up

Export Citation Format

Share Document