Quantum gauge freedom in the Lorentz violating background

2017 ◽  
Vol 15 (01) ◽  
pp. 1850009 ◽  
Author(s):  
Mushtaq B. Shah ◽  
Prince A. Ganai

In this paper, we will study the Lorentz symmetry breaking down to its subgroup. A two-form gauge theory is investigated in the Lorentz violating background and it will be shown that this symmetry violation affects the structure of this gauge theory. In particular, we will study the gaugeon formalism and FFBRST for such a theory in this broken spacetime. In addition to Kugo-Ojima type condition, a thorough evaluation of quantum gauge freedom and gaugeon modes is carried out. We will explicitly demonstrate that in Lorentz broken spacetime, our reducible gauge theory fully depicts the physical aspects of gaugeon fields.

2018 ◽  
Vol 15 (07) ◽  
pp. 1850106 ◽  
Author(s):  
Mushtaq Bashir Shah ◽  
Prince Ahmad Ganai

We study the Lorentz symmetry breaking of the 3-form gauge theory down to its sub-group. A 3-form gauge theory is studied in such a Lorentz violating background and these symmetry violation effects will affect the aspects of such a gauge theory. Also, we study the gaugeon formalism and FFBRST of 3-form theory in such a background. It is seen that the generating functional gets modified. With this, we obtain a connection between covariant and noncovariant gauges of such a gauge theory. Furthermore, we study the Batalin–Vilkovisky (BV) formulation of such a gauge theory in such a Lorentz violating background.


Author(s):  
Faizuddin Ahmed

In this paper, we investigate the behaviour of a relativistic quantum oscillator under the effects of Lorentz symmetry violation determined by a tensor (KF)µναβ out of the Standard Model Extension. We analyze the quantum system under a Coulomb-type radial electric field and a uniform magnetic induced by Lorentz symmetry breaking effects under a Cornell-type potential, and obtain the bound states solution by solving the Klein-Gordon oscillator. We see a quantum effect due to the dependence of the angular frequency of the oscillator on the quantum numbers of the system, and the energy eigenvalues and the wave-function of the oscillator field get modified by the Lorentz symmetry breaking parameters as well as due to the presence of Cornell-type potential.


Author(s):  
Faizuddin Ahmed

In this work, linear confinement of a relativistic scalar particle under the effects of Lorentz symmetry violation is investigated. We introduce a scalar potential by modifying the mass via transformation M → M + S(r) in the wave equation, and analyze the effects on the eigenvalues and the wave function. We see that the solution of the bound state to the wave equation can be achieved, and the energy eigenvalues and the wave function modified by the Lorentz symmetry breaking parameters as well as potential


2016 ◽  
Vol 25 (09) ◽  
pp. 1641003
Author(s):  
H. Belich ◽  
K. Bakke

In this paper, we have investigated the arising of geometric quantum phases in a relativistic quantum dynamics of a Dirac neutral particle from the spontaneous Lorentz symmetry violation effects in the cosmic string spacetime. We started by the Dirac equation in an effective metric, and we have observed a relativistic geometric phase which stems from the topology of the cosmic string spacetime and an intrinsic Lorentz symmetry breaking effects. It is shown that both Lorentz symmetry breaking effects and the topology of the defect yields a phase shift in the wave function of the nonrelativistic spin-[Formula: see text] particle.


2021 ◽  
Vol 36 (08n09) ◽  
pp. 2150067
Author(s):  
K. Bakke ◽  
H. Belich

We analyze nonrelativistic quantum effects on a neutral particle due to the presence of an attractive inverse-square potential that stems from the effects of the Lorentz symmetry violation determined by the parity-even sector of the tensor [Formula: see text]. We show that bound states solutions to the Schrödinger equation can be achieved. We go further by considering a repulsive inverse-square potential yielded by Lorentz symmetry breaking effects, which are also determined the parity-even sector of the tensor [Formula: see text]. Then, we analyze the influence of this repulsive inverse-square potential on a neutral particle confined to two cylindrical surfaces and a cylindrical surface.


2017 ◽  
Vol 32 (14) ◽  
pp. 1750077 ◽  
Author(s):  
C. A. Escobar ◽  
L. F. Urrutia

Yang–Mills theories supplemented by an additional coordinate constraint, which is solved and substituted in the original Lagrangian, provide examples of the so-called Nambu models, in the case where such constraints arise from spontaneous Lorentz symmetry breaking. Some explicit calculations have shown that, after additional conditions are imposed, Nambu models are capable of reproducing the original gauge theories, thus making Lorentz violation unobservable and allowing the interpretation of the corresponding massless gauge bosons as the Goldstone bosons arising from the spontaneous symmetry breaking. A natural question posed by this approach in the realm of gauge theories is to determine under which conditions the recovery of an arbitrary gauge theory from the corresponding Nambu model, defined by a general constraint over the coordinates, becomes possible. We refer to these theories as extended Nambu models (ENM) and emphasize the fact that the defining coordinate constraint is not treated as a standard gauge fixing term. At this level, the mechanism for generating the constraint is irrelevant and the case of spontaneous Lorentz symmetry breaking is taken only as a motivation, which naturally bring this problem under consideration. Using a nonperturbative Hamiltonian analysis we prove that the ENM yields the original gauge theory after we demand current conservation for all time, together with the imposition of the Gauss laws constraints as initial conditions upon the dynamics of the ENM. The Nambu models yielding electrodynamics, Yang–Mills theories and linearized gravity are particular examples of our general approach.


2016 ◽  
Vol 28 (10) ◽  
pp. 1650023 ◽  
Author(s):  
A. G. de Lima ◽  
H. Belich ◽  
K. Bakke

From the effects of the Lorentz symmetry violation in the CPT-even gauge sector of the Standard Model Extension determined by a tensor background [Formula: see text], we establish a possible scenario where an analogue of the He–McKellar–Wilkens effect can stem from. Besides, we build quantum holonomies associated with the analogue of the He–McKellar–Wilkens effect and discuss a possible analogy with the geometric quantum computation. Finally, we investigate the dependence of the energy levels on the He–McKellar–Wilkens geometric phase induced by Lorentz symmetry breaking effects when the particle is confined to a hard-wall confining potential.


Sign in / Sign up

Export Citation Format

Share Document