Some interactions of spherically symmetric massive scalar field with Brans–Dicke scalar field in Robertson–Walker universe

2019 ◽  
Vol 16 (04) ◽  
pp. 1950066 ◽  
Author(s):  
Kangujam Priyokumar Singh ◽  
Rajshekhar Roy Baruah

Here in this work, we investigated the possible cosmological consequences of the interaction of Brans–Dicke scalar field and massive scalar field by considering spherically symmetric Robertson–Walker metric. The present problem can also be treated as an extension work of [K. Priyokumar et al., Interaction of gravitational field and Brans–Dicke field, Res. Astron. Astrophys. 16(4) (2016) 64; K. Priyokumar and M. Dewri, Interaction of electromagnetic field and Brans–Dicke field, Chinease J. Phys. 54 (2016) 845]. The exact solutions of the field equations are obtained with seven different cases. The behavior of the model and their contribution to the process of the evolution are examined in detail from some explicit and reasonable values of free parameter. We also presented the variations of certain physical parameters versus cosmic time graphically to compare our solutions with the present observational findings. When we studied further, it is found that the cosmological term [Formula: see text] takes a great role in the accelerating expansion of our universe when both scalar fields are exponentially increasing functions of time, while the cosmological term will not appear in the case when both the scalar fields are exponentially decreasing functions of time. Also, the scalar field is seen to have a tendency to increase the expansion of the universe, thereby flattening the universe.

2021 ◽  
Vol 36 (08) ◽  
pp. 2150054
Author(s):  
K. Dasu Naidu ◽  
Y. Aditya ◽  
R. L. Naidu ◽  
D. R. K. Reddy

In this paper, our purpose is to discuss the dynamical aspects of Kaluza–Klein five-dimensional cosmological model filled with minimally interacting baryonic matter and dark energy (DE) in the presence of an attractive massive scalar field. We obtain a determinate solution of the Einstein field equations using (i) a relation between the metric potentials and (ii) a power law relation between the average scale factor of the universe and the massive scalar field. We have determined scalar field, matter energy density, DE density, equation of state (EoS) [Formula: see text], deceleration [Formula: see text] and statefinder [Formula: see text] parameters of our model. We also develop [Formula: see text]–[Formula: see text] phase, squared sound speed, statefinders and [Formula: see text]–[Formula: see text] planes in the evolving universe. It is observed that the EoS parameter exhibits quintom-like behavior from quintessence to phantom epoch by crossing the vacuum era of the universe. The squared speed of sound represents the instability of the model, whereas the [Formula: see text]–[Formula: see text] plane shows both thawing and freezing regions. The [Formula: see text]CDM limit is attained in both [Formula: see text]–[Formula: see text] and statefinder planes. We have also discussed the cosmological importance of the above parameters with reference to modern cosmology. It is found that the dynamics of these cosmological parameters indicate the accelerated expansion of the universe which is consistent with the current cosmological observations.


2019 ◽  
Vol 64 (3) ◽  
pp. 189 ◽  
Author(s):  
O. S. Stashko ◽  
V. I. Zhdanov

We study static spherically symmetric configurations in the presence of linear massive scalar fields within General Relativity. Static solutions of the Einstein equations are considered under conditions of asymptotic flatness. Each solution is fixed by the configuration mass and the field strength parameter, which are defined at spatial infinity. The metric coefficients and the scalar field for a specific configuration are obtained numerically. Then we study the time-like geodesics describing the test particle motion. The focus is on the distribution of stable circular orbits (SCOs) of the test particles around a configuration. We found that, for the continuum of configuration parameters, there exist two unlinked regions of SCOs that are separated by some annular region, where SCOs do not exist.


2020 ◽  
Vol 98 (11) ◽  
pp. 993-998
Author(s):  
K. Deniel Raju ◽  
M.P.V.V. Bhaskara Rao ◽  
Y. Aditya ◽  
T. Vinutha ◽  
D.R.K. Reddy

This study is mainly concerned with a spatially homogeneous and anisotropic Kantowski–Sachs cosmological model with anisotropic dark energy fluid and massive scalar field. We solve the field equations using (i) the shear scalar proportionality to the expansion scalar and (ii) a mathematical condition that is a consequence of the power law between the scalar field and the average scale factor of the universe, and the corresponding dark energy model is presented. The cosmological parameters of the model are computed and discussed, as well as the relevance of its dynamical aspects to the recent scenario of the accelerated expansion of the universe.


1976 ◽  
Vol 29 (3) ◽  
pp. 195 ◽  
Author(s):  
JR Rao ◽  
RN Tiwari ◽  
BK Nayak

An exact class of nonstatic spherically symmetric solutions is obtained for the Einstein field equations with a massive scalar field as source. The solutions are found to characterize the 'strong gravity' associated with elementary particles, and it is shown that Ivanenko's (1965) massive graviton possesses zero spin.


2019 ◽  
Vol 34 (11) ◽  
pp. 1950066 ◽  
Author(s):  
Can Aktaş

In this research, we have investigated the behavior of massive and massless scalar field (SF) models (normal and phantom) for Kaluza–Klein universe in [Formula: see text] gravity with cosmological term ([Formula: see text]). To obtain field equations, we have used [Formula: see text] model given by Harko et al. [Phys. Rev. D 84, 024020 (2011)] and anisotropy feature of the universe. Finally, we have discussed our results in [Formula: see text] and General Relativity Theory (GRT) with various graphics.


Author(s):  
M. P. V. V. Bhaskara Rao ◽  
Y. Aditya ◽  
U. Y. Divya Prasanthi ◽  
D. R. K. Reddy

This paper deals with the construction of locally rotationally symmetric (LRS) Bianchi type-II (B-II) cosmological models obtained by solving Einstein field equations coupled with an attractive massive scalar field (MSF) when the source of gravitation is the mixture of cosmic string cloud and anisotropic dark energy (DE) fluid which are minimally interacting. We have obtained exact cosmological models by using (i) shear scalar is proportional to the scalar expansion of the space–time and (ii) a power-law relation between the average scale factor of the universe and the scalar field. Our models represent string cosmological model and DE model in the presence of MSF. Using our model, we determine cosmological parameters such as energy densities, deceleration parameter, statefinders and equation of state parameter. We, also, present the tension density and energy density of the string. We discuss the physical aspects of these cosmological parameters. It is observed that our models represent accelerated expansion phenomenon of our universe as confirmed by Supernova Ia experiment.


2010 ◽  
Vol 25 (07) ◽  
pp. 1429-1438 ◽  
Author(s):  
MOHAMMAD MEHRPOOYA ◽  
D. MOMENI

First, we review some attempts made to find the exact spherically symmetric solutions to Einstein field equations in the presence of scalar fields. Wyman's solution in both the static and the nonstatic scalar field is discussed, and it is shown why in the case of the nonstatic homogenous matter field the static metric cannot be represented in terms of elementary functions. We mention here that if the space–time is static, according to field equations, there are two options for fixing the scalar field: static (time-independent) and nonstatic (time-dependent). All these solutions are limited to the minimally coupled massless scalar fields and also in the absence of the cosmological constant. Then we show that if we are interested to have homogenous isotropic scalar field matter, we can construct a series solution in terms of the scalar field's mass and cosmological constant. This solution is static and possesses a locally flat case as a special choice of the mass of the scalar field and can be interpreted as an effective vacuum. Therefore, the mass of the scalar field eliminates any locally gravitational effect as tidal forces. Finally, we describe why this system is unstable in the language of dynamical systems.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Haidar Sheikhahmadi ◽  
Ali Aghamohammadi ◽  
Khaled Saaidi

During this work, using subtraction renormalization mechanism, zero point quantum fluctuations for bosonic scalar fields in a de-Sitter like background are investigated. By virtue of the observed value for spectral index,ns(k), for massive scalar field the best value for the first slow roll parameter,ϵ, is achieved. In addition, the energy density of vacuum quantum fluctuations for massless scalar field is obtained. The effects of these fluctuations on other components of the universe are studied. By solving the conservation equation, for some different examples, the energy density for different components of the universe is obtained. In the case which all components of the universe are in an interaction, the different dissipation functions,Q~i, are considered. The time evolution ofρDE(z)/ρcri(z)shows thatQ~=3γH(t)ρmhas the best agreement in comparison to observational data including CMB, BAO, and SNeIa data set.


Sign in / Sign up

Export Citation Format

Share Document