On the Graph of a Group Mapping and Its Centralizers

2008 ◽  
Vol 15 (01) ◽  
pp. 109-118
Author(s):  
Yuwen Cheng ◽  
Feng-Kuo Huang ◽  
Chiou-Shing Wang

The aim of this paper is to use the graphical properties of a group mapping to study the algebraic properties of its centralizers. Equivalent conditions for the simplicity of the centralizer nearring of a given group mapping are given. Examples are provided to demonstrate and delimit our results.

2022 ◽  
Vol 2022 ◽  
pp. 1-6
Author(s):  
Han Li ◽  
M. Nadeem ◽  
M. A. Ali ◽  
H. Mutee ur Rehman

In this article, some algebraic properties of the Wilson loop have been investigated in a broad manner. These properties include identities, autotopisms, and implications. We use some equivalent conditions to study the behavior of holomorphism of this loop. Under the shadow of this holomorphism, we are able to observe coincident loops.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Youqi Liu ◽  
Xiaofeng Wang

In this paper, dual spaces of large Fock spaces F ϕ p with 0 < p < ∞ are characterized. Also, algebraic properties and equivalent conditions for compactness of weakly localized operators are obtained on F ϕ p 0 < p < ∞ .


2021 ◽  
Vol 76 (2) ◽  
Author(s):  
Leonardo Alese

AbstractGiven a pair of real functions (k, f), we study the conditions they must satisfy for $$k+\lambda f$$ k + λ f to be the curvature in the arc-length of a closed planar curve for all real $$\lambda $$ λ . Several equivalent conditions are pointed out, certain periodic behaviours are shown as essential and a family of such pairs is explicitely constructed. The discrete counterpart of the problem is also studied.


2021 ◽  
Vol 19 (1) ◽  
pp. 77-86
Author(s):  
Xiangjun Kong ◽  
Pei Wang ◽  
Jian Tang

Abstract In any U-abundant semigroup with an Ehresmann transversal, two significant components R and L are introduced in this paper and described by Green’s ∼ \sim -relations. Some interesting properties associated with R and L are explored and some equivalent conditions for the Ehresmann transversal to be a quasi-ideal are acquired. Finally, a spined product structure theorem is established for a U-abundant semigroup with a quasi-ideal Ehresmann transversal by means of R and L.


2019 ◽  
Vol 17 (1) ◽  
pp. 1538-1546
Author(s):  
Xin Zhou ◽  
Liangyun Chen ◽  
Yuan Chang

Abstract In this paper, we apply the concept of fuzzy sets to Novikov algebras, and introduce the concepts of L-fuzzy ideals and L-fuzzy subalgebras. We get a sufficient and neccessary condition such that an L-fuzzy subspace is an L-fuzzy ideal. Moreover, we show that the quotient algebra A/μ of the L-fuzzy ideal μ is isomorphic to the algebra A/Aμ of the non-fuzzy ideal Aμ. Finally, we discuss the algebraic properties of surjective homomorphic image and preimage of an L-fuzzy ideal.


2021 ◽  
Vol 19 (1) ◽  
pp. 515-530
Author(s):  
Xiao Yu ◽  
Pu Zhang ◽  
Hongliang Li

Abstract In this paper, we study the equivalent conditions for the boundedness of the commutators generated by the multilinear maximal function and the bounded mean oscillation (BMO) function on Morrey space. Moreover, the endpoint estimate for such operators on generalized Morrey spaces is also given.


1999 ◽  
Vol 6 (4) ◽  
pp. 299-306
Author(s):  
D. Bhattacharjee

Abstract In this paper we consider several constructions which from a given 𝐵-product *𝐵 lead to another one . We shall be interested in finding what algebraic properties of the ring 𝑅𝐵 = 〈𝐶ℕ, +, *𝐵〉 are shared also by the ring . In particular, for some constructions the rings 𝑅𝐵 and will be isomorphic and therefore have the same algebraic properties.


2021 ◽  
pp. 1-21
Author(s):  
Muhammad Shabir ◽  
Rimsha Mushtaq ◽  
Munazza Naz

In this paper, we focus on two main objectives. Firstly, we define some binary and unary operations on N-soft sets and study their algebraic properties. In unary operations, three different types of complements are studied. We prove De Morgan’s laws concerning top complements and for bottom complements for N-soft sets where N is fixed and provide a counterexample to show that De Morgan’s laws do not hold if we take different N. Then, we study different collections of N-soft sets which become idempotent commutative monoids and consequently show, that, these monoids give rise to hemirings of N-soft sets. Some of these hemirings are turned out as lattices. Finally, we show that the collection of all N-soft sets with full parameter set E and collection of all N-soft sets with parameter subset A are Stone Algebras. The second objective is to integrate the well-known technique of TOPSIS and N-soft set-based mathematical models from the real world. We discuss a hybrid model of multi-criteria decision-making combining the TOPSIS and N-soft sets and present an algorithm with implementation on the selection of the best model of laptop.


2020 ◽  
Vol 18 (1) ◽  
pp. 1540-1551
Author(s):  
Jung Wook Lim ◽  
Dong Yeol Oh

Abstract Let ({\mathrm{\Gamma}},\le ) be a strictly ordered monoid, and let {{\mathrm{\Gamma}}}^{\ast }\left={\mathrm{\Gamma}}\backslash \{0\} . Let D\subseteq E be an extension of commutative rings with identity, and let I be a nonzero proper ideal of D. Set \begin{array}{l}D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] := \left\{f\in [\kern-2pt[ {E}^{{\mathrm{\Gamma}},\le }]\kern-2pt] \hspace{0.15em}|\hspace{0.2em}f(0)\in D\right\}\hspace{.5em}\text{and}\\ \hspace{0.2em}D+[\kern-2pt[ {I}^{{\Gamma }^{\ast },\le }]\kern-2pt] := \left\{f\in [\kern-2pt[ {D}^{{\mathrm{\Gamma}},\le }]\kern-2pt] \hspace{0.15em}|\hspace{0.2em}f(\alpha )\in I,\hspace{.5em}\text{for}\hspace{.25em}\text{all}\hspace{.5em}\alpha \in {{\mathrm{\Gamma}}}^{\ast }\right\}.\end{array} In this paper, we give necessary conditions for the rings D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively ordered, and sufficient conditions for the rings D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively totally ordered. Moreover, we give a necessary and sufficient condition for the ring D+[\kern-2pt[ {I}^{{\Gamma }^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively totally ordered. As corollaries, we give equivalent conditions for the rings D+({X}_{1},\ldots ,{X}_{n})E{[}{X}_{1},\ldots ,{X}_{n}] and D+({X}_{1},\ldots ,{X}_{n})I{[}{X}_{1},\ldots ,{X}_{n}] to be Noetherian.


Sign in / Sign up

Export Citation Format

Share Document