Total State Dynamics in the GKSL Regime

2017 ◽  
Vol 24 (04) ◽  
pp. 1740014
Author(s):  
Nina Megier ◽  
Walter T. Strunz

We develop a framework that allows us to describe the dynamics of the total state of an open quantum system and its bosonic environment in the usual Born (weak coupling) and Markov approximation. By shifting the whole time-dependence into an unnormalized s-operator of the open system, the full dynamics is captured by an s-master equation of similar structure than the well-known Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master equation for the reduced dynamics. By varying the ordering parameter s (0 ≤ s ≤ 1) we obtain the partial Husimi representation (s = 0) and the partial Glauber-Sudarshan representation (s = 1) for the dynamics of the total state. For the reduced density operator the GKSL master equation can be derived easily. The case of s = 1/2, leading to a partial Wigner representation, is helpful to study the overlap of states in the total Hilbert space of system and environment.

2005 ◽  
Vol 12 (01) ◽  
pp. 65-80 ◽  
Author(s):  
Walter T. Strunz

We determine the dynamics of the total state of a system and environment for an open system model, at finite temperature. Based on a partial Husimi representation, our framework describes the full dynamics very efficiently through equations in the Hilbert space of the open system only. We briefly review the zero-temperature case and present the corresponding new finite temperature theory, within the usual Born-Markov approximation. As we will show, from a reduced point of view, our approach amounts to the derivation of a stochastic Schrödinger equation description of the dynamics. We show how the reduced density operator evolves according to the expected (finite temperature) master equation of Lindblad form.


2017 ◽  
Vol 24 (04) ◽  
pp. 1740012 ◽  
Author(s):  
Chahan M. Kropf ◽  
Vyacheslav N. Shatokhin ◽  
Andreas Buchleitner

We show how random unitary dynamics arise from the coupling of an open quantum system to a static environment. Subsequently, we derive a master equation for the reduced system random unitary dynamics and study three specific cases: commuting system and interaction Hamiltonians, the short-time limit, and the Markov approximation.


1995 ◽  
Vol 09 (02) ◽  
pp. 87-94 ◽  
Author(s):  
S. V. LAWANDE ◽  
Q. V. LAWANDE

The Feynman propagator in coherent states representation is obtained for a system of a single harmonic oscillator coupled to a reservoir of N oscillators. Using this propagator, an exact master equation is obtained for the evolution of the reduced density matrix for the open system of the oscillator.


Author(s):  
Krzysztof Szczygielski

We consider an open quantum system in [Formula: see text] governed by quasiperiodic Hamiltonian with rationally independent frequencies and under the assumption of Lyapunov–Perron reducibility of the associated Schrödinger equation. We construct the Markovian Master Equation and the resulting CP-divisible evolution in the weak coupling limit regime, generalizing our previous results from the periodic case. The analysis is conducted with the application of projection operator techniques and concluded with some results regarding stability of solutions and existence of quasiperiodic global steady state.


1983 ◽  
Vol 61 (11) ◽  
pp. 1479-1485 ◽  
Author(s):  
I. D. Cox ◽  
W. E. Hagston ◽  
B. J. Holmes

Damping theory of an open system S is usually formulated in terms of projection operators which introduce nonuniqueness into the analysis. An insight into the nature of the approximations that arise from this aspect of the formalism is revealed by considering systems of varying complexity. This leads to the conclusion that the results of higher order perturbation theory approximations may not be meaningful.


2019 ◽  
Vol 73 (3) ◽  
Author(s):  
Gábor Homa ◽  
József Zsolt Bernád ◽  
László Lisztes

Author(s):  
Fabricio Toscano ◽  
Anatole Kenfack ◽  
Andre R.R Carvalho ◽  
Jan M Rost ◽  
Alfredo M Ozorio de Almeida

Just as a coherent state may be considered as a quantum point, its restriction to a factor space of the full Hilbert space can be interpreted as a quantum plane. The overlap of such a factor coherent state with a full pure state is akin to a quantum section. It defines a reduced pure state in the cofactor Hilbert space. Physically, this factorization corresponds to the description of interacting components of a quantum system with many degrees of freedom and the sections could be generated by conceivable partial measurements. The collection of all the Wigner functions corresponding to a full set of parallel quantum sections defines the Husimi–Wigner representation. It occupies an intermediate ground between the drastic suppression of non-classical features, characteristic of Husimi functions, and the daunting complexity of higher dimensional Wigner functions. After analysing these features for simpler states, we exploit this new representation as a probe of numerically computed eigenstates of a chaotic Hamiltonian. Though less regular, the individual two-dimensional Wigner functions resemble those of semiclassically quantized states.


Sign in / Sign up

Export Citation Format

Share Document