WATER SUPPLY VULNERABILITY ASSESSMENT FOR SUSTAINABLE LIVELIHOODS

2007 ◽  
Vol 09 (01) ◽  
pp. 121-135 ◽  
Author(s):  
WIJANTO HADIPURO

All the United Nations' members have already committed to achieve the Millennium Development Goals (MDGs) to reduce by half the proportion of 1.1 billion people without sustainable access to safe drinking water by 2015. The problem is that with all the limiting capacities, which half should be prioritized and what kind of policy intervention can be used to achieve the goal. This paper proposes a methodology on water supply vulnerability assessment, specifically for meeting basic human needs. Based on the impacts to the five assets owned by a certain household and the causes of the lack of access, the policy intervention can be tailored made as to what problems the community faces. Hopefully the method can be used by multilateral donors or agencies and all levels of government to focus on a certain community or area that should be prioritized to meet the MDG target.

2009 ◽  
Vol 11 (1) ◽  
pp. 15-33
Author(s):  
Lynn Thiesmeyer

The Millennium Development Goals are framed within the post-war discourses of development that also gave us Basic Human Needs and Human Security. The Goals set out a consideration of the failures of earlier strategies along with an agenda for the accelerated reduction of poverty and its accompanying human insecurities. Though the more critical aspects of the MDG discourse were sorely needed, they also left space for the repetition of earlier top–down development strategies, and, more generally, for a (re)vision and wider implementation of globalised intervention by developed countries into the less-developed. In this discourse developed countries identify needs on the part of the less-developed and then supply these needs. The ‘need’ discourse focussed on here represents inferior public health that requires services, goods and equipment to be provided by developed countries; what it ignores are negative health consequences that can arise from development schemes themselves.


2010 ◽  
Vol 61 (5) ◽  
pp. 1317-1339 ◽  
Author(s):  
Andrew Ako Ako ◽  
Jun Shimada ◽  
Gloria Eneke Takem Eyong ◽  
Wilson Yetoh Fantong

Cameroon has been fully engaged with the Millennium Development Goals (MDGs) since their inception in 2000. This paper examines the situation of access to potable water and sanitation in Cameroon within the context of the Millennium Development Goals (MDGs), establishes whether Cameroon is on the track of meeting the MDGs in these domains and proposes actions to be taken to bring it closer to these objectives. Based on analyzed data obtained from national surveys, government ministries, national statistical offices, bibliographic research, reports and interviews, it argues that Cameroon will not reach the water and sanitation MGDs. While Cameroon is not yet on track to meet the targets of the MDGs for water and sanitation, it has made notable progress since 1990, much more needs to be done to improve the situation, especially in rural areas. In 2006, 70% of the population had access to safe drinking water and the coverage in urban centres is 88%, significantly better than the 47% in rural areas. However, rapid urbanization has rendered existing infrastructure inadequate with periurban dwellers also lacking access to safe drinking water. Sanitation coverage is also poor. In urban areas only 58% of the population has access to improved sanitation facilities, and the rate in rural areas is 42%. Women and girls shoulder the largest burden in collecting water, 15% of urban and 18% rural populations use improved drinking water sources over 30 minutes away. Cameroon faces the following challenges in reaching the water and sanitation MDGs: poor management and development of the resources, coupled with inadequate political will and commitment for the long term; rapid urbanization; urban and rural poverty and regulation and legislative lapses. The authors propose that: bridging the gap between national water policies and water services; recognizing the role played by Civil Society Organizations (CSOs) in the attainment of MDGs; developing a Council Water Resource Management Policy and Strategy (CWARMPS); organizing an institutional framework for the water and sanitation sector as well as completion and implementation of an Integrated Water Resources Management (IWRM) plan, would bring Cameroon closer to the water and sanitation MDGs.


2010 ◽  
Vol 1 (1) ◽  
pp. 2-16 ◽  
Author(s):  
Guy Howard ◽  
Katrina Charles ◽  
Kathy Pond ◽  
Anca Brookshaw ◽  
Rifat Hossain ◽  
...  

Drinking-water supply and sanitation services are essential for human health, but their technologies and management systems are potentially vulnerable to climate change. An assessment was made of the resilience of water supply and sanitation systems against forecast climate changes by 2020 and 2030. The results showed very few technologies are resilient to climate change and the sustainability of the current progress towards the Millennium Development Goals (MDGs) may be significantly undermined. Management approaches are more important than technology in building resilience for water supply, but the reverse is true for sanitation. Whilst climate change represents a significant threat to sustainable drinking-water and sanitation services, through no-regrets actions and using opportunities to increase service quality, climate change may be a driver for improvements that have been insufficiently delivered to date.


2020 ◽  
Vol 16 (1) ◽  
pp. 171-192
Author(s):  
Junaid Alam Memon ◽  

Governments in developing countries face financial constraints to ensure supply of clean drinking water. They may benefit from increasing water charges for those who are be willing to pay little extra in lieu of their demand for improvement in water quality and service. To check the plausibility of this proposal, we investigated drinking water supply and quality, and welloff consumers demand for improved service delivery in Shah-Rukun-e-alam and Mumtazabad towns in Multan city of Pakistan. Qualitative data obtained through a questionnaire survey was analyzed using descriptive and regression techniques. Qualitative information obtained through semi structured interviews was helpful in designing survey questionnaire and to elaborate quantitative results. Results reveal that the respondents accord high importance to the provision of safe drinking water than to other daily household needs. The demand for improvement in water supply parameters exceeds the demand for improvements in water quality parameters, with the reliable supply being the most demanded improvement. Majority realize the government’s budget constraints in improving service delivery. Most respondents would pay PKR 100 in addition to what they are paying now. Their willingness to pay (WTP) this amount correlates with their awareness on water and health nexus, and depends household income, number of children under 14 years age and awareness of actual water quality tested through laboratory. Besides recommending raise of water charges by PKR 100 per month per household in both towns, the service quality improvement may consider interventions such as mobile water testing laboratory and awareness campaigns motivate citizens to pay for safe drinking water.


2021 ◽  
Author(s):  
Katalin Demeter ◽  
Julia Derx ◽  
Jürgen Komma ◽  
Juraj Parajka ◽  
Jack Schijven ◽  
...  

<p><strong>Background</strong>: Rivers are important sources for drinking water supply, however, they are often impacted by wastewater discharges from wastewater treatment plants (WWTP) and combined sewer overflows (CSO). Reduction of the faecal pollution burden is possible through enhanced wastewater treatment or prevention of CSOs. Few methodological efforts have been made so far to investigate how these measures would affect the long-term treatment requirements for microbiologically safe drinking water supply under future changes.</p><p><strong>Objectives</strong>: This study aimed to apply a new integrative approach to decipher the interplay between the effects of future changes and wastewater management measures on the required treatment of river water to produce safe drinking water. We investigated scenarios of climate change and population growth, in combination with different wastewater management scenarios (i.e., no upgrades and upgrades at WWTPs, CSOs, and both). To the best of our knowledge, this is the first study to investigate this interplay. We focussed on the viral index pathogens norovirus and enterovirus and made a cross-comparison with a bacterial and a protozoan reference pathogen (Campylobacter and Cryptosporidium).</p><p><strong>Methods</strong>: We significantly extended QMRAcatch (v1.0 Python), a probabilistic-deterministic model that combines virus fate and transport modelling in the river with quantitative microbial risk assessment (QMRA). To investigate the impact of climatic changes, we used a conceptual semi-distributed hydrological model and regional climate model outputs to simulate river discharges for the period 2035 – 2049. We assumed that population growth leads to a corresponding increase in WWTP discharges. QMRAcatch was successfully calibrated and validated based on a four-year dataset of a human-associated genetic MST marker and enterovirus. The study site was the Danube in Vienna, Austria.</p><p><strong>Results</strong>: In the reference scenario, approx. 98% of the enterovirus and norovirus loads at the study site (median: 10<sup>10</sup> and 10<sup>13</sup> N/d) originated from WWTP effluent, while the remainder was via CSO events. The required log reduction value (LRV) to produce safe drinking water was 6.3 and 8.4 log<sub>10</sub> for enterovirus and norovirus. Future changes in population size, river flows and CSO events did not affect these treatment requirements, and neither did the prevention of CSOs. In contrast, in the scenario of enhanced wastewater treatment, which showed lower LRVs by 2.0 and 1.3 log<sub>10</sub>, climate-change-driven increases in CSO events had a considerable impact on the treatment requirements, as they affected the main pollution source. Preventing CSOs and installing enhanced treatment at the WWTPs together had the most significant positive effect with a reduction of LRVs by 3.9 and 3.8 log<sub>10</sub> compared to the reference scenario.</p><p><strong>Conclusions</strong>: The integrative modelling approach was successfully realised. The simultaneous consideration of source apportionment and concentrations of the reference pathogens were found crucial to understand the interplay among the effects of climate change, population growth and pollution control measures. The approach was demonstrated for a study site representing a large river impacted by WWTP and CSO discharges, but is applicable at other sites to support long term water safety planning.</p>


Sign in / Sign up

Export Citation Format

Share Document